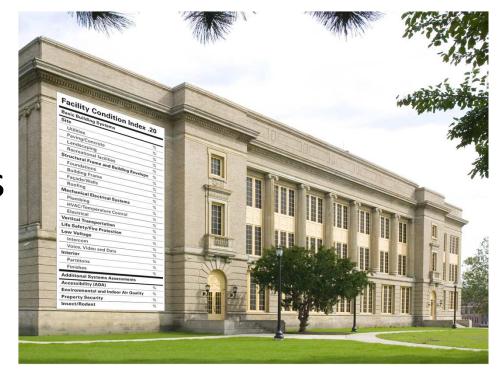


Health Life Safety Survey and Master Facilities Plan


Community Presentation
Board Meeting

March 23, 2015

FGM ARCHITECTS

Agenda

- Facilities
- Building Assessment
- Analysis and Strategies

FACILITIES

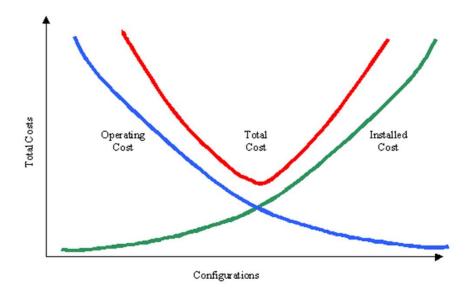
Buildings are an Assembly of Systems

- Existing buildings are assessed by separating a building into component systems
- A systems approach is used for budgeting
 - New construction costs
 - Life cycle cost analysis
 - Maintenance and repair costs
- Budget management begins with targeted costs based on systems

Building Systems

- Foundations are the Substructure System
- Structure, walls, roof and windows are the Shell System
- The arrangement of rooms along with the finishes are the Interior System
- HVAC, Fire Protection, Electrical, Plumbing, and Low Voltage are all Systems

Useful Life


- Substructure and Shell are slow systems that change very little over the life of a building
- Low Voltage Systems are fast systems that change many times over the life of a building
- Over the life of a building you will replace some systems or sub-systems in their entirety
 - The roof sub-system of a 50-year building may have a 20-year useful life and be replaced twice during that 50-year period

Life Cycle Costs

- Life-cycle cost analysis is a method for assessing the total cost of facility ownership
 - Acquiring
 - Owning, operating and maintaining
 - Disposing of a building or building system
- Understand long-term impact of decisions
- Plan and budget for replacement

Total Costs

- Construction Costs
- Operation Costs
- Maintenance and Repair Costs
- Capital Improvement Cost

"Pay me now or pay me later"

Construction Costs

Systems		Cost /SF	% of Total
1	Substructure	\$15.00	6.7%
2	Shell	\$75.00	33.3%
3	Interiors	\$25.00	11.1%
4.1	Conveying	\$1.00	0.4%
4.2	Plumbing	\$10.00	4.4%
4.3	HVAC including BAS	\$30.00	13.3%
4.4	Fire Protection	\$3.00	1.3%
4.5	Electrical	\$24.00	10.7%
4.6	Low Voltage	\$4.00	1.8%
5	Equipment and Furnishings	\$11.00	4.9%
6	Special Construction / Demolition	\$1.00	0.4%
8	General Conditions / OH & Profit	\$26.00	11.6%
	Building Cost/SF	\$225.00	100.0%
7	Building Site	varies	

In addition to building costs and site costs, total project cost includes soft costs and contingencies

Operations and Maintenance Costs

Operation Costs

Reoccurring costs to provide the necessary services to keep the building open and habitable

Maintenance and Repair Costs

Expected costs to off-set the normal deterioration of building elements based on age, wear and tear, weather and water

Operations and Maintenance Costs

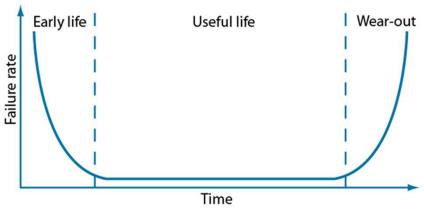
- Operating costs include energy consumption, changing filters and small repairs
 - If a repair is below \$1,000 to \$5,000 it is often considered an operating costs
- Operating costs can vary based on several factors:
 - Quality of original materials
 - Efficiency of systems
 - Past procedures

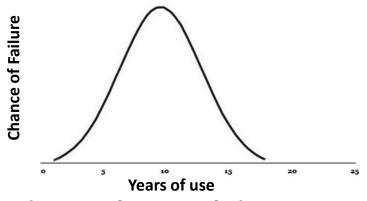
Operations and Maintenance Costs

- Building Maintenance and Repair Costs
 - Studies recommend 2% to 4% annual expenditures for maintenance and repair
 - On a building with a 50-year useful life a minimum of 2% of the cost to replace the building is desired for an annual budget
- In addition to the building, there are site maintenance costs that should be budgeted
- A more sophisticated analysis can be conducted on an individual system basis

Capital Improvement Costs

Capital Improvements

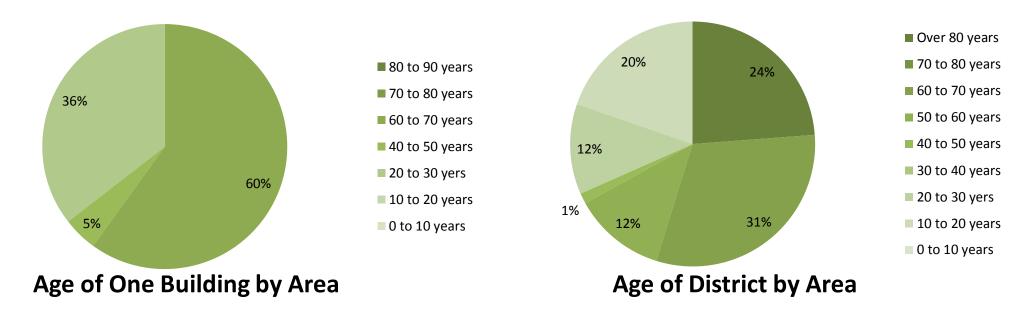

Projects to extend the useful life of systems and the building or to make modifications to enhance or expand programs



Building Age and Facility Needs

- Time, use, and the elements take their toll on a building
- What has been done,
 or has not been done
 in the past, affects
 what you need to do

Useful life and system failure



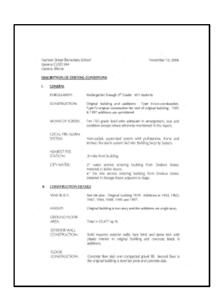
Building Age and Facility Needs

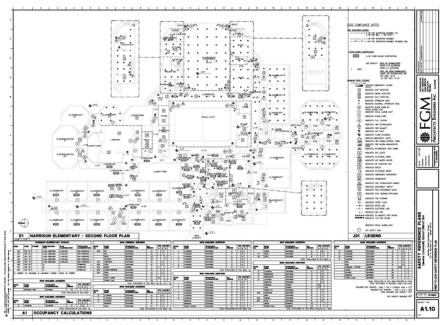
 Typical system deterioration or failures can be expected based on the age of a building or system


BUILDING ASSESSMENT

Health Life Safety Survey

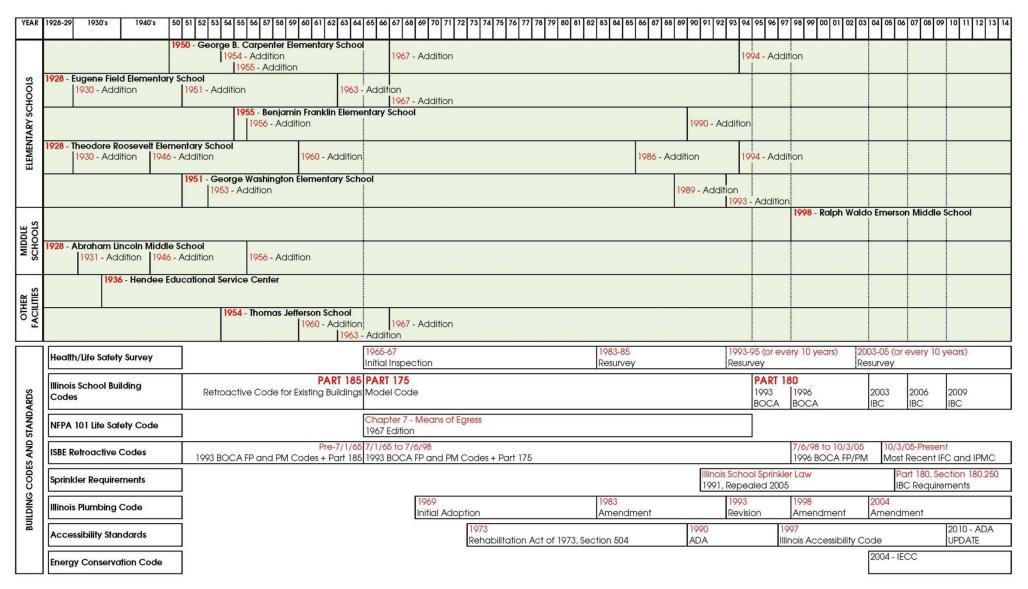
- Safety Reference Plans
- Building Descriptions
- List of Violations and Recommended Corrections
 - Code citation
 - Budget
- Violations
 - Urgent
 - Required
 - Recommended





Health Life Safety Survey

- Construction Area, Construction Types and Fire Separations
- Code calculated exiting capacity of rooms, corridors, stairs and exits



Applicable Codes

Need for a Building Assessment

- Allows the district to understand the condition and performance of the building and of the individual systems
- Establishes a base line condition
- Allows long-term maintenance and repair budgets to be developed
- Necessary to determine the impact of deferring required maintenance

Building Assessment Process

- Building and District staff interviews
- Facility questionnaire
- Review of drawings, reports and other studies
 - Verify all information at buildings
- Architects and Engineers Building Review
 - All rooms and spaces
 - Readily observable conditions
- Building security review

Building Assessment Process

- Prepare list of possible items and review each item with District
- Work with Nicholas & Associates to prepare budgets
 - Health Life Safety Items
 - Building Assessment Items
- Review all identified items in the context of any educational and program needs

Existing Facility Information

- Original building construction documents
- 2013 Cook County Regional Office of Education Annual Facility Inspection Reports
- 2013 Reta Security Report
- Structural Evaluation of Stages
- Maintenance Plan dated December 12, 2012
- List of completed projects from Maintenance Plan
- Appraisal Information

ANALYSIS AND STRATEGIES

Systems with Significant Costs over Time

- HVAC System
 - Building Automation Sub-system
- Shell System
 - Roof sub-system
 - Masonry maintenance
- Site Paving
 - Drives
 - Parking
- Low Voltage Systems

HVAC Systems

SCHOOL NAME	SYSTEM DESCRIPTION	MAJOR UPGRADES	YEAR	ANTICIPATED LIFESPAN	USABLE LIFE REMAINING
Carpenter	VRF cassette system	New System	2012	25 years	
Emerson	VAV boxes served by boilers, chillers and AHUs	None; original to the building	1998	20 years	
Field	VAV boxes served by boilers and condensing units	New System	2014	20 years	
Franklin	VAV boxes served by boilers and condensing units	New Boilers and reheat coils New condensing units	2013 2005	20 years 20 years	
Jefferson	Unit Ventilators served by boilers (assumed)	New steam traps (2014) All other equipment is original	1954 1960's	20 years	
Lincoln	Unit Ventilators served by boilers and chillers	New UVs, AHU, Chiller and pumps	2004	20 years	
Roosevelt	Unit Ventilators served by boilers and chillers	New UVs, AHU's, Chiller, Boilers and pumps	2010	20 years	
Washington	Unit Ventilators served by boilers and chillers	New UV's, RTU's, Chiller, Boilers and pumps	2009	20 years	

Maintenance Strategies

Reactive - Run it till it breaks

Preventative - Based on time or use, maintenance is performed to extend the life

Predictive - Measurements to detect onset of systems degradation

Reliability Centered - Perform required maintenance in a system's operating context

Deferred Maintenance

- There is a distinction between deferred maintenance and ignored maintenance
- Intentionally deferring needed maintenance after a careful assessment of facilities condition is a strategy
- Ignoring maintenance is a problem

From the work of Faramarz Vakili, Associate Director of the Physical Plant, University of Wisconsin-Madison

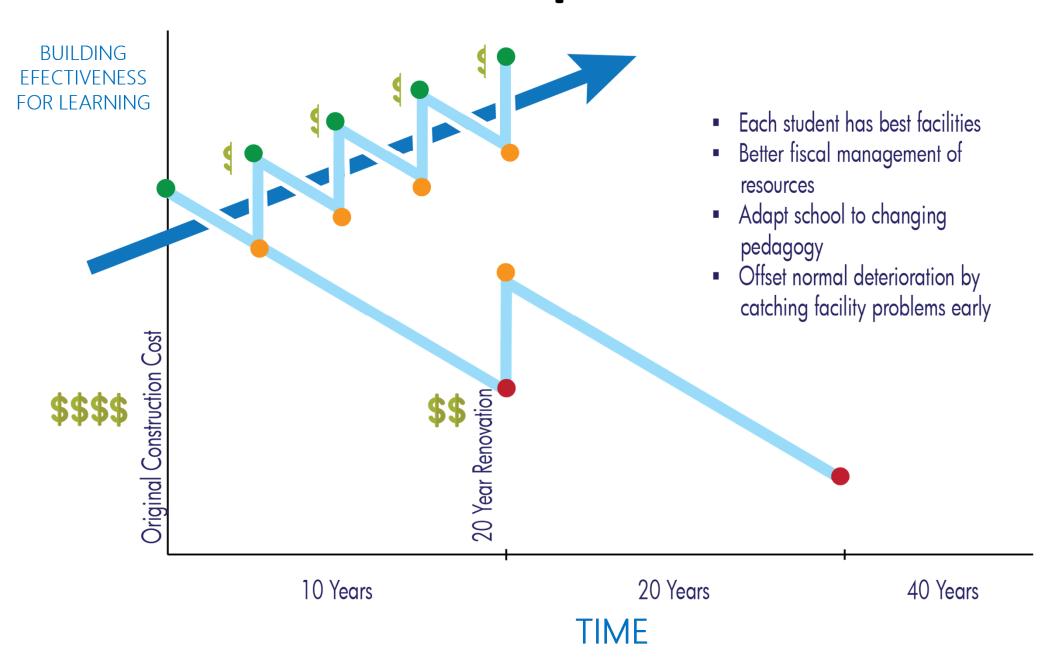
Project Prioritization

Priority One

Violation of the code or a health / safety concern or significant additional costs if item is not addressed

Priority Two

Necessary to comply with a recommended standard or increase operating efficiency or extend the useful life of the building or a system


Priority Three

Improve the quality of materials or systems or reduce the risk of future failures or the enhance performance of a system

Continual Improvement

