SPECIFICATIONS

PAGES

Division No.	15 - Mechanical
--------------	-----------------

	· •	12
15056	Common Motor Requirements for Plumbing and HVAC Equipment	3
15060	Hangers and Supports for HVAC and Plumbing Piping and Equip.	11
15070	Vibration & Seismic Controls for HVAC & Plumbing Piping & Equip.	11
15075	Identification for Plumbing and HVAC Piping and Equipment	6
15083	HVAC Insulation	27
15181	Hydronic Piping	24
15185	Hydronic Pumps	6
15513	Condensing Boilers	10
15815	Metal Ducts	16
15820	Duct Accessories	15
15890	HVAC Air – Distribution System Cleaning	5
15900	HVAC Instrumentation and Controls	8
15910	HVAC Variable Frequency Drives	9
15950	Testing Adjusting & Balancing	19
16 - Elec	ctrical	
16010	Electrical General Requirements	9
16030		3
16050	Basic Materials and Methods	11
16060	Electrical Demolition	3
16170	Grounding and Bonding	3
16195	Electrical Identification	3
16470	Electrical Panel Boards	6
	15070 15075 15083 15181 15185 15513 15815 15820 15890 15900 15910 15950 16 - Elect 16010 16030 16050 16060 16170 16195	 15056 Common Motor Requirements for Plumbing and HVAC Equipment 15056 Hangers and Supports for HVAC and Plumbing Piping and Equip. 15070 Vibration & Seismic Controls for HVAC & Plumbing Piping & Equip. 15075 Identification for Plumbing and HVAC Piping and Equipment 15083 HVAC Insulation 15181 Hydronic Piping 15185 Hydronic Pumps 15513 Condensing Boilers 15820 Duct Accessories 15890 HVAC Air – Distribution System Cleaning 15900 HVAC Variable Frequency Drives 15910 HVAC Variable Frequency Drives 15950 Testing Adjusting & Balancing 16 - Electrical 16010 Electrical General Requirements 16030 Electrical Acceptance Testing 16050 Basic Materials and Methods 16060 Electrical Demolition 16170 Grounding and Bonding 16195 Electrical Identification

END OF TABLE OF CONTENTS

SECTION 15051 COMMON WORK RESULTS FOR PLUMBING AND HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Mechanical sleeve seals.
 - 5. Sleeves.
 - 6. Escutcheons.
 - 7. Grout.
 - 8. Plumbing and HVAC demolition.
 - 9. Equipment installation requirements common to equipment sections.
 - 10. Painting and finishing.
 - 11. Concrete bases.
 - 12. Supports and anchorages.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:
 - 1. ABS: Acrylonitrile-butadiene-styrene plastic.
 - 2. CPVC: Chlorinated polyvinyl chloride plastic.
 - 3. PE: Polyethylene plastic.

- 4. PVC: Polyvinyl chloride plastic.
- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Transition fittings.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Escutcheons.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for Plumbing and HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.
- D. All equipment, materials and installation shall comply with 2010 California Mechanical Code, 2010 California Plumbing Code, 2010 California Building Code, and 2010 California Energy Code.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing and HVAC installations.

- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for plumbing and HVAC items requiring access that are concealed behind finished surfaces."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.
- 2.2 PIPE, TUBE, AND FITTINGS
 - A. Refer to individual Division 15 piping Sections for pipe, tube, and fitting materials and joining methods.
 - B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 15 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

- F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- H. Solvent Cements for Joining Plastic Piping:
 - 1. ABS Piping: ASTM D 2235.
 - 2. CPVC Piping: ASTM F 493.
 - 3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - 4. PVC to ABS Piping Transition: ASTM D 3138.
- I. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.4 TRANSITION FITTINGS

- A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
 - 1. Manufacturers:
 - a. Cascade Waterworks Mfg. Co.
 - b. Dresser Industries, Inc.; DMD Div.
 - c. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
 - d. JCM Industries.
 - e. Smith-Blair, Inc.
 - f. Viking Johnson.
 - 2. Underground Piping NPS 1-1/2 and Smaller: Manufactured fitting or coupling.
 - 3. Underground Piping NPS 2 and Larger: AWWA C219, metal sleeve-type coupling.
 - 4. Aboveground Pressure Piping: Pipe fitting.
- B. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Eslon Thermoplastics.
- C. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Thompson Plastics, Inc.
- D. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 - 1. Manufacturers:
 - a. NIBCO INC.

- b. NIBCO, Inc.; Chemtrol Div.
- E. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
 - 1. Manufacturers:
 - a. Cascade Waterworks Mfg. Co.
 - b. Fernco, Inc.
 - c. Mission Rubber Company.
 - d. Plastic Oddities, Inc.

2.5 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Epco Sales, Inc.
 - d. Watts Industries, Inc.; Water Products Div.
- D. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, fullface- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.
- E. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Manufacturers:
 - a. Perfection Corp.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Co., Inc.
 - d. Victaulic Co. of America.

2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Plastic. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe: ASTM D 1785, Schedule 40.
- G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated.

- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated.
- E. One-Piece, Floor-Plate Type: Cast-iron floor plate.
- F. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PLUMBING AND HVAC DEMOLITION

- A. Disconnect, demolish, and remove plumbing and HVAC systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - 3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 - 4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
 - 5. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - 6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 - 7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to District.
- B. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 15 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished chrome-plated finish.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - g. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 - h. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.
 - 2. Existing Piping: Use the following:
 - a. Chrome-Plated Piping: Split-casting, cast-brass type with chrome-plated finish.
 - b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge and spring clips.
 - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting, castbrass type with chrome-plated finish.
 - d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
 - e. Bare Piping in Unfinished Service Spaces: Split-casting, cast-brass type with polished chrome-plated finish.
 - f. Bare Piping in Equipment Rooms: Split-casting, cast-brass type.
 - g. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting, floor-plate type.

- M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Sheet Sleeves: For pipes penetrating gypsum-board partitions.
 - b. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 - 1) Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint.
- N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Verify final equipment locations for roughing-in.
- Q. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.3 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 15 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 - 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 4. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 - 5. PVC Nonpressure Piping: Join according to ASTM D 2855.
 - 6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.
- J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
- K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.
- L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.4 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install plumbing and HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.6 PAINTING

A. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.7 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement.

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing and HVAC materials and equipment.
- B. Field Welding: Comply with AWS D1.1.

3.9 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor plumbing materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.10 GROUTING

- A. Mix and install grout for plumbing and HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION

SECTION 15056 COMMON MOTOR REQUIREMENTS FOR PLUMBING AND HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 QUALITY ASSURANCE

A. All equipment, materials and installation shall comply with 2010 California Mechanical Code, 2010 California Plumbing Code, 2010 California Building Code, and 2010 California Energy Code.

1.4 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when stricter requirements are specified in plumbing and HVAC equipment schedules or Sections.
- B. Comply with NEMA MG 1 unless otherwise indicated.
- C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Multispeed Motors: Separate winding for each speed.
- F. Rotor: Random-wound, squirrel cage.
- G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- H. Temperature Rise: Class B.
- I. Insulation: Class F.
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.

- 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION

SECTION 15060

HANGERS AND SUPPORTS FOR HVAC AND PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following hangers and supports for HVAC and plumbing system piping and equipment:
 - 1. Steel pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Pipe stands.
 - 7. Pipe positioning systems.
 - 8. Equipment supports.
- B. Related Sections include the following:
 - 1. Division 15 Section "Vibration and Seismic Controls for HVAC and Plumbing Piping and Equipment" for vibration isolation devices.
 - 2. Division 15 Section "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
 - 3. Division 15 Section(s) "Metal Ducts" and "Duct Accessories" for duct hangers and supports.

1.3 DEFINITIONS

- A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry Inc.
- B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports.
 - 2. Thermal-hanger shield inserts.
 - 3. Powder-actuated fastener systems.
 - 4. Pipe positioning systems.
- B. Shop Drawings: Signed and sealed by a qualified professional structural engineer. Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers. Include Product Data for components.
 - 2. Metal framing systems. Include Product Data for components.
 - 3. Pipe stands. Include Product Data for components.
 - 4. Equipment supports.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel.
- B. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel."
 - 2. AWS D1.2, "Structural Welding Code--Aluminum."
 - 3. AWS D1.3, "Structural Welding Code--Sheet Steel."
 - 4. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
 - 5. ASME Boiler and Pressure Vessel Code: Section IX.
- C. All equipment, materials and installation shall comply with 2010 California Mechanical Code, 2010 California Plumbing Code, 2010 California Building Code, and 2010 California Energy Code.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.
- B. Manufacturers:
 - 1. B-Line Systems, Inc.; a division of Cooper Industries.
 - 2. ERICO/Michigan Hanger Co.
 - 3. Grinnell Corp.
 - 4. PHD Manufacturing, Inc.
 - 5. PHS Industries, Inc.
 - 6. Piping Technology & Products, Inc.
 - 7. Tolco Inc.
- C. Galvanized, Metallic Coatings: Pre-galvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Manufacturers:
 - 1. B-Line Systems, Inc.; a division of Cooper Industries.
 - 2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
 - 3. GS Metals Corp.
 - 4. Power-Strut Div.; Tyco International, Ltd.
 - 5. Thomas & Betts Corporation.
 - 6. Tolco Inc.
 - 7. Unistrut Corp.; Tyco International, Ltd.
- C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Description: 100-psig-minimum, compressive-strength insulation insert encased in sheet metal shield.
- B. Manufacturers:

- 1. Carpenter & Paterson, Inc.
- 2. ERICO/Michigan Hanger Co.
- 3. PHS Industries, Inc.
- 4. Pipe Shields, Inc.
- 5. Rilco Manufacturing Company, Inc.
- 6. Value Engineered Products, Inc.
- C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.
- D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate.
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. B-Line Systems, Inc.; a division of Cooper Industries.
 - b. Empire Industries, Inc.
 - c. Hilti, Inc.
 - d. ITW Ramset/Red Head.
 - e. MKT Fastening, LLC.
 - f. Powers Fasteners.

2.7 PIPE STAND FABRICATION

- A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosionresistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. ERICO/Michigan Hanger Co.
 - b. MIRO Industries.
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. MIRO Industries.

- D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. ERICO/Michigan Hanger Co.
 - b. MIRO Industries.
 - c. Portable Pipe Hangers.
 - 2. Base: Stainless steel.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuousthread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainlesssteel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. Portable Pipe Hangers.
 - 2. Bases: One or more plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe support made from structuralsteel shape, continuous-thread rods, and rollers for mounting on permanent stationary roof curb.

2.8 PIPE POSITIONING SYSTEMS

- A. Description: IAPMO PS 42, system of metal brackets, clips, and straps for positioning piping in pipe spaces for plumbing fixtures for commercial applications.
- B. Manufacturers:
 - 1. C & S Mfg. Corp.
 - 2. HOLDRITE Corp.; Hubbard Enterprises.
 - 3. Samco Stamping, Inc.

2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.10 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

- 1. Properties: Nonstaining, noncorrosive, and nongaseous.
- 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
 - 10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
 - 11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
 - 12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
 - 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.

- 16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
- 17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
- Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.
- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.

- 11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

- N. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.
- O. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Pipe Stand Installation:
 - 1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 - 2. Curb-Mounting-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb.
- G. Pipe Positioning System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. Refer to Division 15 Section "Plumbing Fixtures" for plumbing fixtures.
- H. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- I. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- K. Install lateral bracing with pipe hangers and supports to prevent swaying.

- L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, **NPS 2-1/2** and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- M. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.
- O. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood inserts.
 - 6. Insert Material: Length at least as long as protective shield.
 - 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

- A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal shall match existing adjacent and surrounding conditions.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION

SECTION 15070

VIBRATION AND SEISMIC CONTROLS FOR HVAC AND PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Restrained elastomeric isolation mounts.
 - 4. Freestanding and restrained spring isolators.
 - 5. Housed spring mounts.
 - 6. Elastomeric hangers.
 - 7. Spring hangers.
 - 8. Spring hangers with vertical-limit stops.
 - 9. Pipe riser resilient supports.
 - 10. Resilient pipe guides.
 - 11. Freestanding and restrained air-mounting system.
 - 12. Restrained vibration isolation roof-curb rails.
 - 13. Seismic snubbers.
 - 14. Restraining braces and cables.
 - 15. Steel and inertia, vibration isolation equipment bases.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: D.
 - 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: II.
 - a. Component Importance Factor (Ip): 1.0.
 - b. Component Response Modification Factor (Rp): 6.0.
 - c. Component Amplification Facto (Ap): 2.5.
 - 3. Design Spectral Response Acceleration at Short Periods (0.2 Second): 1.016.
 - 4. Design Spectral Response Acceleration at 1-Second Period: 0.6.
 - 5. For components mounted on vibration isolators, the design force shall be taken as ZFp.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction.
 - b. Annotate to indicate application of each product submitted and compliance with requirements.
 - 3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.
- B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators, seismic restraints, and for designing vibration isolation bases.
 - 2. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist.
 - 3. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.
 - 4. Seismic-Restraint Details:
 - a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 - c. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).
- C. Coordination Drawings: Show coordination of seismic bracing for HVAC and plumbing piping and equipment with other systems and equipment in the vicinity, including other supports and seismic restraints.
- D. Welding certificates.
- E. Qualification Data: For professional engineer and testing agency.

F. Field quality-control test reports.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproved by ICC-ES, or preapproved by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.
- E. All equipment, materials and installation shall comply with 2010 California Mechanical Code, 2010 California Plumbing Code, 2010 California Building Code, and 2010 California Energy Code.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. M.W. Sausse & Company, Inc. (Vibrex).
 - 2. California Dynamics Corporation.
 - 3. Kinetics Noise Control.
 - 4. Mason Industries.
- B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant neoprene.
- C. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.

- 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridgebearing neoprene as defined by AASHTO.
- D. Restrained Mounts: All-directional mountings with seismic restraint.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridgebearing neoprene as defined by AASHTO.
- E. Spring Isolators: Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- F. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.
 - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch-thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 - 2. Restraint: Seismic or limit stop as required for equipment and authorities having jurisdiction.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- G. Housed Spring Mounts: Housed spring isolator with integral seismic snubbers.
 - 1. Housing: Ductile-iron or steel housing to provide all-directional seismic restraint.
 - 2. Base: Factory drilled for bolting to structure.
 - 3. Snubbers: Vertically adjustable to allow a maximum of 1/4-inch travel up or down before contacting a resilient collar.
- H. Elastomeric Hangers: Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.
- I. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.

- 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
- 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
- 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
- J. Spring Hangers with Vertical-Limit Stop: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression and with a vertical-limit stop.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
 - 8. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
- K. Pipe Riser Resilient Support: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch-thick neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig and for equal resistance in all directions.
- L. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of 1/2-inch-thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.2 RESTRAINED VIBRATION ISOLATION ROOF-CURB RAILS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. M.W. Sausse & Company, Inc. (Vibrex).
 - 2. California Dynamics Corporation.
 - 3. Kinetics Noise Control.
 - 4. Mason Industries.

- B. General Requirements for Restrained Vibration Isolation Roof-Curb Rails: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand seismic forces.
- C. Lower Support Assembly: Formed sheet-metal section containing adjustable and removable steel springs that support upper frame. Upper frame shall provide continuous support for equipment and shall be captive to resiliently resist seismic forces. Lower support assembly shall have a means for attaching to building structure and a wood nailer for attaching roof materials, and shall be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly.
- D. Spring Isolators: Adjustable, restrained spring isolators shall be mounted on 1/4-inch-thick, elastomeric vibration isolation pads and shall have access ports, for level adjustment, with removable waterproof covers at all isolator locations. Isolators shall be located so they are accessible for adjustment at any time during the life of the installation without interfering with the integrity of the roof.
 - 1. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic restraint.
 - a. Housing: Steel with resilient vertical-limit stops and adjustable equipment mounting and leveling bolt.
 - b. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - c. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - d. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - e. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 2. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - a. Resilient Material: Oil- and water-resistant standard neoprene.
- E. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch thick.
- F. Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counterflashed over roof materials.

2.3 VIBRATION ISOLATION EQUIPMENT BASES

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. M.W. Sausse & Company, Inc. (Vibrex).
 - 2. California Dynamics Corporation.
 - 3. Kinetics Noise Control.
 - 4. Mason Industries.
- B. Steel Base: Factory-fabricated, welded, structural-steel bases and rails.

- 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
- 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
- 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
- C. Inertia Base: Factory-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
 - 4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

2.4 SEISMIC-RESTRAINT DEVICES

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. M.W. Sausse & Company, Inc. (Vibrex).
 - 2. California Dynamics Corporation.
 - 3. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 4. Hilti, Inc.
 - 5. Kinetics Noise Control.
 - 6. Loos & Co.; Cableware Division.
 - 7. Mason Industries.
 - 8. TOLCO Incorporated; a brand of NIBCO INC.
 - 9. Unistrut; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least **four** times the maximum seismic forces to which they will be subjected.
- C. Snubbers: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.

- 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
- 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
- 3. Maximum 1/4-inch air gap and minimum 1/4-inch-thick resilient cushion.
- D. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- E. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.
- F. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or reinforcing steel angle clamped to hanger rod.
- G. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- H. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- I. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- J. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.
- K. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.5 FACTORY FINISHES

- A. Finish: Manufacturer's standard prime-coat finish ready for field painting.
- B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 - 1. Powder coating on springs and housings.
 - 2. All hardware shall be galvanized. Hot-dip galvanized metal components for exterior use.
 - 3. Baked enamel or powder coat for metal components on isolators for interior use.
 - 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Equipment Restraints:
 - 1. Install seismic snubbers on HVAC and plumbing equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 - 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 - 3. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction providing required submittals for component.
- B. Piping Restraints:
 - 1. Comply with requirements in MSS SP-127.
 - 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 - 3. Brace a change of direction longer than 12 feet.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction providing required submittals for component.

- E. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- F. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- G. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- H. Drilled-in Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid pre-stressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 - 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 15 Section "Hydronic Piping" and "Domestic Water" for piping flexible connections.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with District's representative, through Architect, before connecting anchorage device to restrained component (unless post connection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.

- 5. Test to 90 percent of rated proof load of device.
- 6. Measure isolator restraint clearance.
- 7. Measure isolator deflection.
- 8. Verify snubber minimum clearances.
- 9. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Adjust active height of spring isolators.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION

SECTION 15077 IDENTIFICATION FOR PLUMBING AND HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Duct labels.
 - 5. Stencils.
 - 6. Valve tags.
 - 7. Warning tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

- 2.1 EQUIPMENT LABELS
 - A. Metal Labels for Equipment:

- 1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
- 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 4. Fasteners: Stainless-steel rivets.
- 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: Black.
 - 3. Background Color: White.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.
- C. Background Color: Yellow.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.
- C. Background Color: Yellow.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.5 STENCILS

- A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
 - 1. Stencil Material: Brass.
 - 2. Stencil Paint: Exterior, gloss, alkyd or acrylic enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
 - 3. Identification Paint: Exterior, alkyd acrylic enamel in colors according to ASME A13.1 unless otherwise indicated.

2.6 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.7 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: Approximately 4 by 7 inches.
 - 2. Fasteners: Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels with painted, color-coded bands or rectangles, complying with ASME A13.1, on each piping system.
 - 1. Identification Paint: Use for contrasting background.
 - 2. Stencil Paint: Use for pipe marking.
- B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- C. Pipe Label Color Schedule:
 - 1. Chilled-Water Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.
 - 2. Heating Water Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.

3.4 DUCT LABEL INSTALLATION

- A. Install plastic-laminated, self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue: For cold-air supply ducts.
 - 2. Yellow: For hot-air supply ducts.
 - 3. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
 - 4. ASME A13.1 Colors and Designs: For hazardous material exhaust.
- B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape: 1-1/2 inches, round.
 - 2. Valve-Tag Color: Natural.
 - 3. Letter Color: Black.
- 3.6 WARNING-TAG INSTALLATION
 - A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION

SECTION 15083 HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Insulation Materials:
 - a. Cellular glass.
 - b. Flexible elastomeric.
 - c. Mineral fiber.
 - 2. Fire-rated insulation systems.
 - 3. Insulating cements.
 - 4. Adhesives.
 - 5. Mastics.
 - 6. Lagging adhesives.
 - 7. Sealants.
 - 8. Factory-applied jackets.
 - 9. Field-applied jackets.
 - 10. Tapes.
 - 11. Securements.
 - 12. Corner angles.
- B. Related Sections:
 - 1. Division 15 Section "Metal Ducts" for duct liners.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).
- B. Product Data: For adhesives and sealants, including printed statement of VOC content.
 - C. Shop Drawings:
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.

- 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
- 6. Detail application of field-applied jackets.
- 7. Detail application at linkages of control devices.
- 8. Detail field application for each equipment type.
- D. Qualification Data: For qualified Installer.
- E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- F. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-testresponse characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 15 Section "Hangers and Supports."
- B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

- 2.1 INSULATION MATERIALS
 - A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
 - B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
 - C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
 - D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
 - E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
 - F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cell-U-Foam Corporation; Ultra-CUF.
 - b. Pittsburgh Corning Corporation; Foamglas Super K.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Board Insulation: ASTM C 552, Type IV.
 - 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 6. Preformed Pipe Insulation with Factory-Applied ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
 - 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
 - G. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.

- H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Duct Wrap.
 - d. Owens Corning; All-Service Duct Wrap.
- I. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. For equipment applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Johns Manville; 800 Series Spin-Glas.
 - c. Knauf Insulation; Insulation Board.
 - d. Owens Corning; Fiberglas 700 Series.
- J. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Micro-Lok.
 - b. Knauf Insulation; 1000 Pipe Insulation.
 - c. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, without factory-applied jacket. Factoryapplied jacket requirements are specified in "Factory-Applied Jackets" Article.
- K. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied FSK jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to 1700 deg F. Comply with ASTM C 656, Type II,

Grade 6. tested and certified to provide a 1- or 2-hour fire rating by a NRTL acceptable to authority having jurisdiction.

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following]:
 - a. Johns Manville; Super Firetemp M.
- B. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 1- or 2-hour fire rating by a NRTL acceptable to authority having jurisdiction.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; FlameChek.
 - b. Johns Manville; Firetemp Wrap.
 - c. Nelson Firestop Products; Nelson FSB Flameshield Blanket.
 - d. Thermal Ceramics; FireMaster Duct Wrap.
 - e. 3M; Fire Barrier Wrap Products.
 - f. Unifrax Corporation; FyreWrap.
 - g. Vesuvius; PYROSCAT FP FASTR Duct Wrap.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Cellular-Glass, Phenolic, Polyisocyanurate, and Polystyrene Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-96.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-33.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA Inc.; Aeroseal.
 - b. Armacell LCC; 520 Adhesive.
 - c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-82.

- b. Foster Products Corporation, H. B. Fuller Company; 85-20.
- 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-35.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 - 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-30.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-35.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 3. Service Temperature Range: 0 to 180 deg F.
 - 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 5. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; Encacel.

- b. Foster Products Corporation, H. B. Fuller Company; 60-95/60-96.
- c. Marathon Industries, Inc.; 570.
- d. Mon-Eco Industries, Inc.; 55-70.
- 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
- 3. Service Temperature Range: Minus 50 to plus 220 deg F.
- 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
- 5. Color: White.
- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-10.
 - b. Foster Products Corporation, H. B. Fuller Company; 35-00.
 - 2. Water-Vapor Permeance: ASTM F 1249, 3 perms at 0.0625-inch dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 200 deg F.
 - 4. Solids Content: 63 percent by volume and 73 percent by weight.
 - 5. Color: White.

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-52.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-42.
 - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fireresistant lagging cloths over duct, equipment, and pipe insulation.
 - 4. Service Temperature Range: Minus 50 to plus 180 deg F.
 - 5. Color: White.

2.6 SEALANTS

- A. Joint Sealants:
 - 1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-76.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-45.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Permanently flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 5. Color: White or gray.
 - 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements provide one of the following:
 - a. Childers Products, Division of ITW; CP-76-8.
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
 - 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.
 - 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 2. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. Metal Jacket:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; Metal Jacketing Systems.
 - b. PABCO Metals Corporation; Surefit.
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105 or 5005, Temper H-14.

- a. Sheet and roll stock ready for shop or field sizing.
- b. Finish and thickness are indicated in field-applied jacket schedules.
- c. Moisture Barrier for Indoor Applications: 1-mil-thick, heat-bonded polyethylene and kraft paper.
- d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
- e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- D. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Polyguard; Alumaguard 60.

2.9 TAPES

- A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - b. Compac Corp.; 110 and 111.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- B. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - b. Compac Corp.; 120.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.

- d. Venture Tape; 3520 CW.
- 2. Width: 2 inches.
- 3. Thickness: 3.7 mils.
- 4. Adhesion: 100 ounces force/inch in width.
- 5. Elongation: 5 percent.
- 6. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

- A. Bands:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products; Bands.
 - b. PABCO Metals Corporation; Bands.
 - c. RPR Products, Inc.; Bands.
 - 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch thick, 3/4 inch wide with wing seal.
 - 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal.
 - 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
 - B. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) Midwest Fasteners, Inc.; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
 - 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide one of the following:

- 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series T.
- 2) GEMCO; Perforated Base.
- 3) Midwest Fasteners, Inc.; Spindle.
- b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
- c. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inchdiameter shank, length to suit depth of insulation indicated.
- d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 4. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) GEMCO; Nylon Hangers.
 - 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.
 - b. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - c. Spindle: Nylon, 0.106-inch-diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 5. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series TSA.
 - 2) GEMCO; Press and Peel.
 - 3) Midwest Fasteners, Inc.; Self Stick.
 - b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inch diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive-backed base with a peel-off protective cover.
- 6. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.

- b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 7. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inchthick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) GEMCO.
 - 2) Midwest Fasteners, Inc.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.
- D. Wire: 0.062-inch soft-annealed stainless steel.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. C & F Wire.
 - b. Childers Products.
 - c. PABCO Metals Corporation.
 - d. RPR Products, Inc.
- 2.11 CORNER ANGLES
 - A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
 - B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.
 - C. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304 or 316.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.

- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
- 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 - 1. Comply with requirements in Division 7 Section "Through-Penetration Firestop Systems" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 - 2. Pipe: Install insulation continuously through floor penetrations.
 - 3. Seal penetrations through fire-rated assemblies.

3.5 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

- A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Protect exposed corners with secured corner angles.
 - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 - d. Do not overcompress insulation during installation.
 - e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 - f. Impale insulation over anchor pins and attach speed washers.
 - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
 - 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make

taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.

- 7. Stagger joints between insulation layers at least 3 inches.
- 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
- 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
- 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.
 - 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
 - 2. Seal longitudinal seams and end joints.
- C. Insulation Installation on Pumps:
 - 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
 - 2. Fabricate boxes from aluminum, at least 0.040 inch thick.
 - 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.6 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.7 CELLULAR-GLASS INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

- 3. For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.8 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
- 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.
- 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.9 MINERAL-FIBER INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.
- E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area.

- 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.
- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.

- b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
- c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
- d. Do not overcompress insulation during installation.
- e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.10 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

- 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
- E. Where PVDC jackets are indicated, install as follows:
 - 1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
 - 2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
 - 3. Continuous jacket can be spiral wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
 - 4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch- circumference limit allows for 2-inch-overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
 - 5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.11 FIRE-RATED INSULATION SYSTEM INSTALLATION

- A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.
- B. Insulate duct access panels and doors to achieve same fire rating as duct.
- C. Install firestopping at penetrations through fire-rated assemblies.

3.12 FINISHES

- A. Duct, Equipment, and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below.
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Engineer. Vary first and second coats to allow visual inspection of the completed Work.

- D. Do not field paint aluminum or stainless-steel jackets.
- 3.13 FIELD QUALITY CONTROL
 - A. Perform tests and inspections.
 - B. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location for each duct system defined in the "Duct Insulation Schedule, General" Article.
 - 2. Inspect field-insulated equipment, randomly selected by Engineer, by removing fieldapplied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
 - 3. Inspect pipe, fittings, strainers, and valves, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
 - C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.14 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in nonconditioned space.
 - 4. Indoor, exposed return located in nonconditioned space.
 - 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 - 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 - 7. Indoor, concealed oven and warewash exhaust.
 - 8. Indoor, exposed oven and warewash exhaust.
 - 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 11. Outdoor, concealed supply and return.
 - 12. Outdoor, exposed supply and return.
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Flexible connectors.
 - 6. Vibration-control devices.
 - 7. Factory-insulated access panels and doors.

3.15 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, supply-, return-, and outside-air ducts insulation shall be one of the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
 - 2. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.
- B. Exposed, supply-, return-, and outdoor-air duct and plenum insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.

3.16 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.
- B. Concealed and exposed, supply- and return-air duct and plenum insulation shall be one of the following:
 - 1. Mineral-Fiber Blanket: 2 inches and 1.5-lb/cu. ft. nominal density.
 - 2. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

3.17 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment in paragraphs below that is not factory insulated.
- C. Heating-hot-water pump insulation shall be one of the following:
 - 1. Cellular Glass: 3 inches thick.
- D. Heating-hot-water expansion/compression tank insulation shall be one of the following:
 - 1. Cellular Glass: 1-1/2 inches thick.
- E. Heating-hot-water air-separator insulation shall be one of the following:
 - 1. Cellular Glass: 3 inches thick.

3.18 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

- 3.19 INDOOR PIPING INSULATION SCHEDULE
 - A. Condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches thick.
 - b. Flexible Elastomeric: 1 inch thick.
 - c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - B. Chilled Water, above 40 Deg F:
 - 1. NPS 12 and Smaller: Insulation shall be one of the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I: 1-1/2 inches thick.
 - C. Heating-Hot-Water Supply and Return, 200 Deg F and below:
 - 1. NPS 12 and Smaller: Insulation shall be one of the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I: 1 inch thick.
 - D. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches thick.
 - b. Flexible Elastomeric: 1 inch thick.
 - E. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch thick.
- 3.20 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE
 - A. Chilled Water and Brine:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 3 inches thick.
 - B. Heating-Hot-Water Supply and Return, 200 Deg F and below:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
 - C. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 2 inches thick.
 - b. Flexible Elastomeric: 2 inches thick.

- D. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 2 inches thick.

3.21 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Concealed:
 - 1. None.
- D. Ducts and Plenums, Exposed:
 - 1. Painted Aluminum, Smooth 1-1/4-Inch-Deep Corrugations: 0.016 inch thick.
- E. Equipment, Concealed:
 - 1. None.
- F. Equipment, Exposed:
 - 1. Painted Aluminum, Smooth: 0.032 inch thick.
- G. Piping, Concealed:
 - 1. None.
- H. Piping, Exposed:
 - 1. Aluminum, Smooth: 0.016 inch thick.

3.22 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Concealed:
 - 1. Painted Aluminum, Smooth: 0.024 inch thick.
- D. Ducts and Plenums, Exposed:
 - 1. Painted Aluminum, Smooth with 1-1/4-Inch-Deep Corrugations: 0.032 inch thick.
- E. Equipment, Concealed:

- 1. Aluminum, Smooth: 0.024 inch thick.
- F. Equipment, Exposed:
 - 1. Painted Aluminum, Smooth with 1-1/4-Inch-Deep Corrugations: 0.032 inch thick.
- G. Piping, Concealed:
 - 1. None.
- H. Piping, Exposed:
 - 1. Painted Aluminum, Smooth with Z-Shaped Locking Seam: 0.032 inch thick.
- 3.23 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET
 - A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION

SECTION 15181 HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 - 1. Hot-water heating piping.
 - 2. Chilled-water piping.
 - 3. Makeup-water piping.
 - 4. Condensate-drain piping.
- B. Related Sections include the following:
 - 1. Division 15 Section "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.
- 1.3 DEFINITIONS
 - A. PTFE: Polytetrafluoroethylene.
- 1.4 PERFORMANCE REQUIREMENTS
 - A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:
 - 1. Hot-Water Heating Piping: 150 psig at 200 deg F.
 - 2. Chilled-Water Piping: 150 psig at 200 deg F.
 - 3. Makeup-Water Piping: 80 psig at 150 deg F.
 - 4. Condensate-Drain Piping: 150 deg F.
 - 5. Air-Vent Piping: 200 deg F
 - 6. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

1.5 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Plastic pipe and fittings with solvent cement.
 - 2. Pressure-seal fittings.
 - 3. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.

- 4. Air control devices.
- 5. Chemical treatment.
- 6. Hydronic specialties.
- B. Shop Drawings: Detail, at 1/4 scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
- C. Welding certificates.
- D. Qualification Data: For Installer.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.
- G. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.
- 1.6 QUALITY ASSURANCE
 - A. Installer Qualifications:
 - 1. Installers of Pressure-Sealed Joints: Installers shall be certified by the pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.
 - B. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 - C. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
 - D. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

1.7 EXTRA MATERIALS

- A. Water-Treatment Chemicals: Furnish enough chemicals for initial system startup and for preventive maintenance for one year from date of Substantial Completion.
- B. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

PART 2 - PRODUCTS

- 2.1 COPPER TUBE AND FITTINGS
 - A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
 - B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.
 - C. Wrought-Copper Fittings: ASME B16.22.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. S. P. Fittings; a division of Star Pipe Products.
 - c. Victaulic Company of America.
 - D. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. T-DRILL Industries Inc.
 - E. Wrought-Copper Unions: ASME B16.22.
- 2.2 STEEL PIPE AND FITTINGS
 - A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.
 - B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.
 - C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in Part 3 "Piping Applications" Article.
 - D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 "Piping Applications" Article.
 - E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.
 - F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
 - G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
 - H. Grooved Mechanical-Joint Fittings and Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Anvil International, Inc.Central Sprinkler Company; a division of Tyco Fire & Building Products.
- b. National Fittings, Inc.
- c. S. P. Fittings; a division of Star Pipe Products.
- d. Victaulic Company of America.
- Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
- 3. Couplings: Ductile- or malleable-iron housing and synthetic rubber gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
- I. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.
- 2.3 PLASTIC PIPE AND FITTINGS
 - A. CPVC Plastic Pipe: ASTM F 441/F 441M, Schedules 40 and 80, plain ends as indicated in Part 3 "Piping Applications" Article.
 - B. CPVC Plastic Pipe Fittings: Socket-type pipe fittings, ASTM F 438 for Schedule 40 pipe; ASTM F 439 for Schedule 80 pipe.
 - C. PVC Plastic Pipe: ASTM D 1785, Schedules 40 and 80, plain ends as indicated in Part 3 "Piping Applications" Article.
 - D. PVC Plastic Pipe Fittings: Socket-type pipe fittings, ASTM D 2466 for Schedule 40 pipe; ASTM D 2467 for Schedule 80 pipe.
- 2.4 JOINING MATERIALS
 - A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
 - C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
 - D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
 - E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

- F. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. CPVC Piping: ASTM F 493.
 - a. Use CPVC solvent cement that has a VOC content of 490 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - b. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - a. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - b. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - H. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.5 TRANSITION FITTINGS

- A. Plastic-to-Metal Transition Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Charlotte Pipe and Foundry Company.
 - b. IPEX Inc.
 - c. KBi.
 - 2. CPVC and PVC one-piece fitting with one threaded brass or copper insert and one Schedule 80 solvent-cement-joint end.
- B. Plastic-to-Metal Transition Unions:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Charlotte Pipe and Foundry Company.
 - b. IPEX Inc.
 - c. KBi.
 - d. NIBCO INC.
 - 2. MSS SP-107, CPVC and PVC union. Include brass or copper end, Schedule 80 solventcement-joint end, rubber gasket, and threaded union.

2.6 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper-alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Flanges:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 3. Factory-fabricated companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
- D. Dielectric-Flange Kits:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 3. Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 4. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.
- E. Dielectric Nipples:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Perfection Corporation; a subsidiary of American Meter Company.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Company, Inc.
 - d. Victaulic Company of America.
 - 2. Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
- F. Dielectric unions and couplings are not acceptable.

2.7 VALVES

- A. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Division 15 Section "HVAC Instrumentation and Controls."
- B. Class 150, Bronze Angle Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Stockham Division.
 - b. Kitz Corporation.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 300 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and union-ring bonnet.
 - d. Ends: Threaded.
 - e. Stem and Disc: Bronze.
 - f. Packing: Asbestos free.
 - g. Handwheel: Malleable iron, bronze.
- C. Two- or Three-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:

f.

- a. Standard: MSS SP-110.
- b. SWP Rating: 150 psig.
- c. CWP Rating: 600 psig.
- d. Body Design: Two piece.
- e. Body Material: Bronze.
- f. Ends: Threaded.
- g. Seats: PTFE or TFE.
- h. Stem: Stainless steel.
- i. Ball: Stainless steel, vented. Chrome-plated not acceptable.
- j. Port: Full

- D. Iron, Single-Flange Butterfly Valves with EPDM Seat and Stainless-Steel Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Crane Co.; Crane Valve Group.
 - c. Hammond Valve.
 - d. Kitz Corporation.
 - e. Milwaukee Valve Company.
 - f. Mueller Steam Specialty; a division of SPX Corporation.
 - g. NIBCO INC.
 - h. Tyco Valves & Controls; a unit of Tyco Flow Control.
 - i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 150 psig.
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 - e. Seat: EPDM.
 - f. Stem: One- or two-piece stainless steel.
 - g. Disc: Stainless steel.
- E. Class 125, Lift Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Vertical flow.
 - d. Body Material: ASTM B 61 or ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.
- F. Class 150, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.

- b. Crane Co.; Crane Valve Group; Crane Valves.
- c. Crane Co.; Crane Valve Group; Jenkins Valves.
- d. Crane Co.; Crane Valve Group; Stockham Division.
- e. Kitz Corporation.
- f. Milwaukee Valve Company.
- g. NIBCO INC.
- h. Red-White Valve Corporation.
- i. Zy-Tech Global Industries, Inc..
- 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 300 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.
- G. Class 125, Iron Swing Check Valves with Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Hammond Valve.
 - c. Kitz Corporation.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. NPS 2-1/2 to NPS , CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 - d. Body Design: Clear or full waterway.
 - e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - f. Ends: Flanged.
 - g. Trim: Bronze.
 - h. Gasket: Asbestos free.
- H. Class 125, Iron, Globe, Center-Guided Check Valves with Resilient Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. Hammond Valve.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.

- 2. Description:
 - a. Standard: MSS SP-125.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 - d. Body Material: ASTM A 126, gray iron.
 - e. Style: Globe, spring loaded.
 - f. Ends: Flanged.
 - g. Seat: EPDM.
- I. Class 125, RS Bronze Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group.
 - b. Hammond Valve.
 - c. Kitz Corporation.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
 - d. Ends: Threaded.
 - e. Stem: Bronze.
 - f. Disc: Solid wedge; bronze.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron, bronze.
- J. Class 125, OS&Y, Iron Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group
 - b. Hammond Valve.
 - c. Kitz Corporation.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-70, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.

- d. Body Material: ASTM A 126, gray iron with bolted bonnet.
- e. Ends: Flanged.
- f. Trim: Bronze.
- g. Disc: Solid wedge.
- h. Packing and Gasket: Asbestos free.
- K. Class 125, Bronze Globe Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group.
 - b. Hammond Valve.
 - c. Kitz Corporation.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
 - d. Ends: Threaded.
 - e. Stem and Disc: Bronze.
 - f. Packing: Asbestos free.
 - g. Handwheel: Malleable iron, bronze.
- L. Class 125, Iron Globe Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group.
 - b. Hammond Valve.
 - c. Kitz Corporation.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-85, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - d. Ends: Flanged.
 - e. Trim: Bronze.

- f. Packing and Gasket: Asbestos free.
- M. Chainwheel
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Babbitt Steam Specialty Co.
 - b. Roto Hammer Industries.
 - c. Trumbull Industries.
 - 2. Description: Valve actuation assembly with sprocket rim, brackets, and chain.
 - a. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
 - b. Attachment: For connection to ball, butterfly and plug valve stems
 - c. Sprocket Rim with Chain Guides: Ductile or cast iron, of type and size required for valve. Include zinc coating.
 - d. Chain: Hot-dip, galvanized steel, of size required to fit sprocket rim.
- N. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - c. Flow Design Inc.
 - d. Griswold Controls.
 - 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Plug: Resin.
 - 5. Seat: PTFE.
 - 6. End Connections: Threaded or socket.
 - 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 8. Handle Style: Lever, with memory stop to retain set position.
 - 9. CWP Rating: Minimum 125 psig.
 - 10. Maximum Operating Temperature: 250 deg F.
- O. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.

- e. Griswold Controls.
- f. Taco.
- g. Tour & Andersson; available through Victaulic Company of America.
- 2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
- 3. Ball: Brass or stainless steel.
- 4. Stem Seals: EPDM O-rings.
- 5. Disc: Glass and carbon-filled PTFE.
- 6. Seat: PTFE.
- 7. End Connections: Flanged or grooved.
- 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 9. Handle Style: Lever, with memory stop to retain set position.
- 10. CWP Rating: Minimum 125 psig.
- 11. Maximum Operating Temperature: 250 deg F.
- P. Diaphragm-Operated, Pressure-Reducing Valves:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - c. Conbraco Industries, Inc.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.
 - 5. Stem Seals: EPDM O-rings.
 - 6. Diaphragm: EPT.
 - 7. Low inlet-pressure check valve.
 - 8. Inlet Strainer: Stainless steel, removable without system shutdown.
 - 9. Valve Seat and Stem: Noncorrosive.
 - 10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- Q. Diaphragm-Operated Safety Valves:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - c. Conbraco Industries, Inc.

- d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Body: Bronze or brass.
- 3. Disc: Glass and carbon-filled PTFE.
- 4. Seat: Brass.
- 5. Stem Seals: EPDM O-rings.
- 6. Diaphragm: EPT.
- 7. Wetted, Internal Work Parts: Brass and rubber.
- 8. Inlet Strainer: Stainless steel, removable without system shutdown.
- 9. Valve Seat and Stem: Noncorrosive.
- 10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- R. Automatic Flow-Control Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flow Design Inc.
 - b. Griswold Controls.
 - 2. Body: Brass or ferrous metal.
 - 3. Piston and Spring Assembly: Stainless steel, tamper proof, self cleaning, and removable.
 - 4. Combination Assemblies: Include bonze or brass-alloy ball valve.
 - 5. Identification Tag: Marked with zone identification, valve number, and flow rate.
 - 6. Size: Same as pipe in which installed.
 - 7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
 - 8. Minimum CWP Rating: 175 psig.
 - 9. Maximum Operating Temperature: 250 deg F.
- 2.8 COMBINATION AIR AND DIRT SEPARATOR
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Spirotherm, Inc.
 - B. Full flow coalescing type combination air eliminator and dirt separator for the hot and chilled water systems. Selection shall be based upon system flow with pipe size as a minimum in accordance with the basis of design. Maximum entering velocity shall not exceed 10 feet per second
 - C. Separator shall be fabricated steel, rated for 150 psig working pressure, stamped and registered in accordance with ASME Section VIII, Division 1 for unfired pressure vessels, and include two equal chambers above and below the inlet / outlet nozzles. The vessel diameter and height above and below the inlet / outlet connections must be equal to the basis of design. Unit shall include removable lower head for internal inspection.
 - D. Unit shall include internal Spirotube® elements filling the entire vessel to suppress turbulence and provide air elimination efficiency of 100% free air, 100% entrained air, and 99.6% dissolved

air at the installed location. Dirt separation efficiency shall be a minimum of 80% of all particles 30 micron and larger within 100 passes. The elements must consist of a copper core tube with continuous wound copper wire medium permanently attached and followed by a separate continuous wound copper wire permanently affixed. Each unit shall have a separate venting chamber to prevent system contaminants from harming the float and venting valve operation. At the top of the venting chamber shall be an integral full port float actuated brass venting mechanism.

E. Units shall include a side with valve tap to flush floating dirt or liquids and for quick bleeding of large amounts of air during system fill or refill.

2.9 AIR CONTROL DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Spirotherm
 - 2. Amtrol, Inc.
 - 3. Armstrong Pumps, Inc.
 - 4. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - 5. Wessels Company
- B. Manual Air Vents:
 - 1. Body: Bronze.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Screwdriver or thumbscrew.
 - 4. Inlet Connection: NPS 1/2.
 - 5. Discharge Connection: NPS 1/8.
 - 6. CWP Rating: 150 psig.
 - 7. Maximum Operating Temperature: 225 deg F.
- C. Automatic Air Vents:
 - 1. Body: Bronze or cast iron.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Noncorrosive metal float.
 - 4. Inlet Connection: NPS 1/2.
 - 5. Discharge Connection: NPS 1/4.
 - 6. CWP Rating: 150 psig.
 - 7. Maximum Operating Temperature: 240 deg F.
- D. Bladder-Type Expansion Tanks:
 - 1. Tank: Welded steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature. Factory test with taps fabricated and supports installed and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 2. Bladder: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.
 - 3. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.
- E. Air Purgers:
 - 1. Body: Cast iron with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal.
 - 2. Maximum Working Pressure: 150 psig.
 - 3. Maximum Operating Temperature: 250 deg F.

2.10 CHEMICAL TREATMENT

- A. Bypass Chemical Feeder: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.
 - 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.

2.11 HYDRONIC PIPING SPECIALTIES

- A. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig.
- B. T-Pattern Strainers:
 - 1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
 - 2. End Connections: Grooved ends.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 57 percent free area.
 - 4. CWP Rating: 750 psig.
- C. Stainless-Steel Bellow, Flexible Connectors:
 - 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 - 2. End Connections: Threaded or flanged to match equipment connected.
 - 3. Performance: Capable of 3/4-inch misalignment.
 - 4. CWP Rating: 150 psig.
 - 5. Maximum Operating Temperature: 250 deg F.
- D. Spherical, Rubber, Flexible Connectors:
 - 1. Body: Fiber-reinforced rubber body.
 - 2. End Connections: Steel flanges drilled to align with Classes 150 and 300 steel flanges.
 - 3. Performance: Capable of misalignment.
 - 4. CWP Rating: 150 psig.
 - 5. Maximum Operating Temperature: 250 deg F.
- E. Expansion fittings are specified in Division 15 Section "Pipe Expansion Fittings and Loops."

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Hot-water heating piping and chilled water piping, aboveground, NPS 2 and smaller, shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
- B. Hot-water heating piping and chilled water piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 - 2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- C. Makeup-water piping installed aboveground shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
- D. Makeup-Water Piping Installed Belowground and within Slabs: Type K, annealed-temper copper tubing, wrought-copper fittings, and soldered joints. Use the fewest possible joints.
- E. Condensate-Drain Piping: Type M, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- F. Air-Vent Piping:
 - 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.
 - 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.
- G. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.

3.2 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.
- B. Install throttling-duty, balancing valves at each branch connection to return main.
- C. Install throttling-duty, balancing valves in the return pipe of each heating or cooling terminal.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; and pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.
- F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate

friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- Q. Locate valves for easy access and provide separate support where necessary.
- R. Install valves in horizontal piping with stem at or above center of pipe.
- S. Install valves in position to allow full stem movement.
- T. Install chainwheels on operators for ball, butterfly, gate, globe, and plug valves NPS 4 and larger and more than 96-inches above floor. Extend chains to 60 inches above finished floor.
- U. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Center-Guided and Plate-Type Check Valves: In horizontal or vertical position, between flanges.
 - 3. Lift Check valves: With stem upright and plumb.
- V. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball, butterfly, or gate valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
 - 3. Throttling Service except Steam: Globe or ball valves.
 - 4. Throttling Service, Steam: Globe valves.
 - 5. Pump-Discharge Check Valves

- a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
- b. NPS 2-1/2 and Larger: Iron swing check valves with lever and weight or with spring or iron, center-guided, metal or resilient-seat check valves.
- W. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- X. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends.
 - 2. For Copper Tubing, NPS 2-1/2 and Larger: Flanged ends.
 - 3. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 4. For Steel Piping, NPS 2-1/2 and Larger: Flanged ends.
- Y. Valve Examination:
 - 1. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
 - 2. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
 - 3. Examine threads on valve and mating pipe for form and cleanliness.
 - 4. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
 - 5. Do not attempt to repair defective valves; replace with new valves
- Z. Adjusting: Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs
- AA. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- BB. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- CC. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.
- DD. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Division 15 Section "Pipe Expansion Fittings and Loops."
- EE. Identify piping as specified in Division 15 Section "Identification For HVAC And Plumbing Piping And Equipment."

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor devices are specified in Division 15 Section "Hangers and Supports For HVAC And Plumbing Piping And Equipment." Comply with the following requirements for maximum spacing of supports.
- B. Seismic restraints are specified in Division 15 Section "Vibration and Seismic Controls For HVAC And Plumbing Piping And Equipment."
- C. Install the following pipe attachments:

- 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
- 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
- 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
- 4. Spring hangers to support vertical runs.
- 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
- D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 to 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 - 3. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 - 4. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 1/2 inch.
 - 5. NPS 3: Maximum span, 12 feet; minimum rod size, 1/2 inch.
 - 6. NPS 4: Maximum span, 14 feet; minimum rod size, 5/8 inch.
 - 7. NPS 6: Maximum span, 17 feet; minimum rod size, 3/4 inch.
 - 8. NPS 8: Maximum span, 19 feet; minimum rod size, 3/4 inch.
- E. Install hangers for drawn-temper copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 3/8 inch.
 - 2. NPS 1: Maximum span, 6 feet; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 1/2 inch.
 - 7. NPS 3: Maximum span, 10 feet; minimum rod size, 1/2 inch.
- F. Plastic Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.
- G. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 15 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using leadfree solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - PVC Pressure Piping: Join ASTM D 1785 schedule number, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule number PVC pipe and socket fittings according to ASTM D 2855.
 - 4. PVC Nonpressure Piping: Join according to ASTM D 2855.
- J. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.
- K. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.
- 3.6 HYDRONIC SPECIALTIES INSTALLATION
 - A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
 - B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Manual vents at heat-transfer coils and elsewhere as required for air venting.
 - C. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.
 - D. Install in-line combination air and dirt separators in pump suction. Install drain valve on air separators NPS 2 and larger. Install blowdown piping with gate or full-port ball valve; extend full size to nearest floor drain.

- E. Install bypass chemical feeders in each hydronic system where indicated, in upright position with top of funnel not more than 48 inches above the floor. Install feeder in minimum NPS 3/4 bypass line, from main with full-size, full-port, ball valve in the main between bypass connections. Install NPS 3/4 pipe from chemical feeder drain, to nearest equipment drain and include a full-size, fullport, ball valve.
- F. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure tank is properly charged with air to suit system Project requirements.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
- D. Install ports for pressure gages and thermometers at coil inlet and outlet connections.

3.8 CHEMICAL TREATMENT

- A. Perform an analysis of makeup water to determine type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling, and to sustain the following water characteristics (or as recommended by chemical specialist):
 - 1. pH: 6.0 to 8.5.
 - 2. "P" Alkalinity: 100 to 500 ppm.
 - 3. Boron: 100 to 200 ppm.
 - 4. Chemical Oxygen Demand: Maximum 100 ppm. Modify this value if closed system contains glycol.
 - 5. Corrosion Inhibitor:
 - a. Sodium Nitrate: 1000 to 1500 ppm.
 - b. Molybdate: 200 to 300 ppm.
 - c. Chromate: 200 to 300 ppm.
 - d. Sodium Nitrate Plus Molybdate: 100 to 200 ppm each.
 - e. Chromate Plus Molybdate: 50 to 100 ppm each.
 - 6. Soluble Copper: Maximum 0.20 ppm.
 - 7. Tolyiriazole Copper and Yellow Metal Corrosion Inhibitor: Minimum 10 ppm.
 - 8. Total Suspended Solids: Maximum 10 ppm.
 - 9. Ammonia: Maximum 20 ppm.
 - 10. Free Caustic Alkalinity: Maximum 20 ppm.
 - 11. Microbiological Limits:
 - a. Total Aerobic Plate Count: Maximum 1000 organisms/ml.
 - b. Total Anaerobic Plate Count: Maximum 100 organisms/ml.
 - c. Nitrate Reducers: 100 organisms/ml.

- d. Sulfate Reducers: Maximum 0 organisms/ml.
- e. Iron Bacteria: Maximum 0 organisms/ml.
- B. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 48 hours, drain, clean strainer screens, and refill with fresh water. Provide temporary strainers and circulating pump for flushing. Circulating pump for flushing shall generate minimum of 8 FPS flow through piping system.
- C. Provide temporary loop to bypass factory-cleaned coils, etc.
- D. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.

3.9 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure, but not less than 150 psi. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
 - 5. After hydrostatic test pressure has been applied for at least 4 hours examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks. Pressure test shall be recorded via 8-inch Bristol pressure recorder.
 - 6. Prepare written report of testing.
- C. Perform the following before operating the system:

- 1. Open manual valves fully.
- 2. Inspect pumps for proper rotation.
- 3. Set makeup pressure-reducing valves for required system pressure.
- 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
- 5. Set temperature controls so all coils are calling for full flow.
- 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
- 7. Verify lubrication of motors and bearings.

END OF SECTION

SECTION 15185 HYDRONIC PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Close-coupled, in-line centrifugal pumps.
 - 2. Separately coupled, vertical, in-line centrifugal pumps.

1.3 DEFINITIONS

- A. Buna-N: Nitrile rubber.
- B. EPT: Ethylene propylene terpolymer.

1.4 SUBMITTALS

- A. Product Data: Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.
- B. Shop Drawings: Show pump layout and connections. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
- C. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain hydronic pumps through one source from a single manufacturer.
- B. Product Options: Drawings indicate size, profiles, and dimensional requirements of hydronic pumps and are based on the specific system indicated.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- D. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Manufacturer's Preparation for Shipping: Clean flanges and exposed machined metal surfaces and treat with anticorrosion compound after assembly and testing. Protect flanges, pipe openings, and nozzles with wooden flange covers or with screwed-in plugs.
- B. Store pumps in dry location.
- C. Retain protective covers for flanges and protective coatings during storage.
- D. Protect bearings and couplings against damage from sand, grit, and other foreign matter.
- E. Comply with pump manufacturer's written rigging instructions.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Mechanical Seals: One mechanical seal for each pump.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS

- A. Manufacturers:
 - 1. Taco
 - 2. Grundfos Pumps Corporation.
 - 3. PACO Pumps.
- B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally or vertically. Rate pump for 125-psig minimum working pressure and a continuous water temperature of 200 deg F.
- C. Pump Construction:

- 1. Casing: Radially split, cast iron, with replaceable bronze wear rings, threaded gage tappings at inlet and outlet, and threaded companion-flange connections.
- 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. Trim impeller to match specified performance.
- 3. Pump Shaft: Stainless steel.
- 4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N bellows and gasket. Include water slinger on shaft between motor and seal.
- 5. Pump Bearings: Permanently lubricated ball bearings.
- D. Motor: Single speed, with permanently lubricated ball bearings, unless otherwise indicated; and rigidly mounted to pump casing. Comply with requirements in Division 15 Section "Common Motor Requirements For Plumbing And HVAC Equipment."

2.3 SEPARATELY COUPLED, VERTICAL, IN-LINE CENTRIFUGAL PUMPS

- A. Manufacturers:
 - 1. Taco
 - 2. Grundfos
 - 3. PACO Pumps.
- B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, separately coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted vertically. Rate pump for 125-psig minimum working pressure and a continuous water temperature of 200 deg F.
- C. Pump Construction:
 - 1. Casing: Radially split, cast iron, with replaceable bronze wear rings, threaded gage tappings at inlet and outlet, and threaded companion-flange connections.
 - 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. Trim impeller to match specified performance.
 - 3. Pump Shaft: Stainless steel.
 - 4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N bellows and gasket. Include water slinger on shaft between motor and seal.
 - 5. Pump Bearings: Permanently lubricated ball bearings.
- D. Shaft Coupling: Axially split spacer coupling.
- E. Motor: Single speed, with permanently lubricated ball bearings, unless otherwise indicated; rigidly mounted to pump casing with lifting eye and supporting lugs in motor enclosure. Comply with requirements in Division 15 Section "Common Motor Requirements For Plumbing And HVAC Equipment."
- F. Capacities and Characteristics: See equipment schedules.

2.4 PUMP SPECIALTY FITTINGS

A. Suction Diffuser: Angle pattern, 175-psig pressure rating, cast-iron body and end cap, pumpinlet fitting; with bronze startup and bronze or stainless-steel permanent strainers; bronze or stainless-steel straightening vanes; drain plug; and factory-fabricated support. B. Triple-Duty Valve: Angle or straight pattern, 175-psig pressure rating, cast-iron body, pumpdischarge fitting; with drain plug and bronze-fitted shutoff, balancing, and check valve features. Brass gage ports with integral check valve, and orifice for flow measurement.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of work.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.
- C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONCRETE BASES

- A. Install concrete bases of dimensions indicated for pumps and controllers. Refer to Division 15 Section "Common Work Results For Plumbing and HVAC."
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of base.
 - 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.

3.3 PUMP INSTALLATION

- A. Comply with HI 1.4
- B. Install pumps with access for periodic maintenance including removal of motors, impellers, couplings, and accessories.
- C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.
- D. Install continuous-thread hanger rods and spring hangers with vertical-limit stop of sufficient size to support pump weight. Vibration isolation devices are specified in Division 15 Section "Vibration and Seismic Controls For HVAC And Plumbing Piping And Equipment." Fabricate brackets or supports as required. Hanger and support materials are specified in Division 15 Section "Hangers and Supports For HVAC And Plumbing Piping And Equipment."
- E. Suspend vertically mounted, in-line centrifugal pumps independent of piping. Install pumps with motor and pump shafts vertical. Use continuous-thread hanger rods and spring hangers with vertical-limit stop of sufficient size to support pump weight. Vibration isolation devices are specified in Division 15 Section "Vibration and Seismic Controls For HVAC And Plumbing

Piping And Equipment." Hanger and support materials are specified in Division 15 Section "Hangers and Supports For HVAC And Plumbing Piping and Equipment."

- F. Set base-mounted pumps on concrete foundation. Disconnect coupling before setting. Do not reconnect couplings until alignment procedure is complete.
 - 1. Support pump baseplate on rectangular metal blocks and shims, or on metal wedges with small taper, at points near foundation bolts to provide a gap of 3/4 to 1-1/2 inches between pump base and foundation for grouting.
 - 2. Adjust metal supports or wedges until pump and driver shafts are level. Check coupling faces and suction and discharge flanges of pump to verify that they are level and plumb.
- G. Automatic Condensate Pump Units: Install units for collecting condensate and extend to open drain.

3.4 ALIGNMENT

- A. Align pump and motor shafts and piping connections after setting on foundation, grout has been set and foundation bolts have been tightened, and piping connections have been made.
- B. Comply with pump and coupling manufacturers' written instructions.
- C. Adjust pump and motor shafts for angular and offset alignment by methods specified in HI 1.1-1.5, "Centrifugal Pumps for Nomenclature, Definitions, Application and Operation."
- D. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with nonshrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.5 CONNECTIONS

- A. Piping installation requirements are specified in other Division 15 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.
- D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.
- E. Install check valve and throttling valve on discharge side of pumps.
- F. Install Y-type strainer or suction diffuser with strainer and shutoff valve on suction side of pumps.
- G. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.
- H. Install pressure gages on pump suction and discharge, at integral pressure-gage tapping, or install single gage with multiple input selector valve.
- I. Install electrical connections for power, controls, and devices.

3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
 - 5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 - 6. Start motor.
 - 7. Open discharge valve slowly.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train District's maintenance personnel to adjust, operate, and maintain hydronic pumps.

END OF SECTION

SECTION 15513 CONDENSING BOILERS

PART 1 - GENERAL

1.1 SUMMARY

A. The work to be performed consists of providing all labor, equipment, materials, etc. to furnish and install new factory assembled, low pressure hot water boilers as described in the specifications herein.

1.2 REFERENCES

- A. ASME Section IV (Heating Boilers)
- B. ANSI Z21.13 / CSA 4.9 (Gas Fired Low Pressure Boilers)
- C. NFPA 54 (ANSI Z221.3) National Fuel Gas Code
- D. ASME CSD-1 (Controls and Safety Devices)

1.3 QUALITY ASSURANCE

- A. The equipment shall, as a minimum, be in strict compliance with the requirements of this specification and shall be the manufacturer's standard commercial product unless specified otherwise. Additional equipment features, details, accessories, appurtenances, etc. which are not specifically identified but which are a part of the manufacturer's standard commercial product, shall be included in the equipment being furnished.
- B. The equipment shall be of the type, design, and size that the manufacturer currently offers for sale and appears in the manufacturer's current catalogue.
- C. The equipment must fit within the allocated space, leaving ample allowance, as may be required by local or state codes, for maintenance and cleaning, and must leave suitable space for easy removal of all equipment appurtenances.
- D. The equipment shall be new and fabricated from new materials. The equipment shall be free from defects in materials and workmanship.
- E. All units of the same classification shall be identical to the extent necessary to insure interchangeability of parts, assemblies, accessories, and spare parts wherever possible.
- F. In order to provide unit responsibility for the specified capacities, efficiencies, and performance, the boiler manufacturer shall certify in writing that the equipment being submitted shall perform as specified. The boiler manufacturer shall be responsible for guarantying that the boiler provides the performance as specified herein.

- G. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- H. ASME Compliance: Fabricate and label boilers to comply with ASME Boiler and Pressure Vessel Code.
- I. UL Compliance: Test boilers for compliance with UL 795, "Commercial-Industrial Gas Heating Equipment." Boilers shall be listed and labeled by a testing agency acceptable to authorities having jurisdiction.

1.4 SUBMITTALS

- A. Product Data: Include performance data, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: For boilers, boiler trim, and accessories. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Design calculations and vibration isolation base details, signed and sealed by a qualified professional engineer.
 - a. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 - b. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails and equipment mounting frames.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
 - 3. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 4. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Source quality-control test reports.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For boilers to include in emergency, operation, and maintenance manuals.
- F. Warranty: Special warranty specified in this Section.

1.5 CERTIFICATIONS

- A. Manufacturer's Certification: The boiler manufacturer shall certify the following:
 - 1. The products and systems furnished are in strict compliance with the specifications.
 - 2. The boiler, burner and other associated mechanical and electrical equipment have all been properly coordinated and integrated to provide a complete and operable boiler.
 - 3. ASME certification.

- 4. CSA (AGA/CGA) certification.
- 5. The specified factory tests have been satisfactorily performed.
- 6. The equipment furnished contains inter-changeable parts with the specified equipment so that all major equipment parts can be obtained from the specified manufacturer.
- B. Contractor's Certification: The contractor shall certify the following:
 - 1. The products and systems installed are in strict compliance with the specifications and all applicable local or state codes.
 - 2. The specified field tests have been satisfactorily performed.
 - 3. The equipment furnished contains inter-changeable parts with the specified equipment so that all major equipment parts can be obtained from the specified manufacturer.

1.6 WARRANTY

A. The boiler manufacturer shall warrant each boiler, including boiler, trim, boiler control system, and all related components, accessories, and appurtenances against defects in workmanship and material for a period of eighteen (18) months from date of shipment, or twelve (12) months from date of start-up, whichever occurs first. Heat exchanger and fuel burner shall be warranted for a period of five (5) years from date of shipment.

PART 2 - PRODUCTS

- 2.1 GENERAL
 - A. Furnish and install factory "packaged" low pressure hot water boilers as manufactured by Patterson-Kelley Co. or as approved and accepted by the engineer. Each factory "packaged" boiler shall be complete with all components, accessories and appurtenances necessary for a complete and operable boiler as hereinafter specified. Each unit shall be furnished factory assembled with required wiring and piping as a self-contained unit. Each unit shall be readily transported and ready for installation.
 - B. Each factory "packaged" boiler, including pressure vessel, trim, valve trains, burner, control system, and all related components, accessories and appurtenances as herein specified shall all be assembled and furnished by the boiler manufacturer. The boiler manufacturer shall provide unit responsibility for the engineering, coordination, workmanship, performance, warranties, and all field services for each factory "packaged" boiler as specified herein. The boiler manufacturer shall be fully responsible for all components assembled and furnished by him whether or not they are of his own manufacture.

2.2 BOILER DESIGN

A. Each hot water boiler shall consist of a horizontal, cast aluminum heat exchanger complete with trim, valve trains, burner, and boiler control system. The boiler manufacturer shall fully coordinate the boiler as to the interaction of its elements with the burner and the boiler control system in order to provide the required capacities, efficiencies, and performance as specified.

- B. Each boiler heat exchanger shall be cast aluminum, counter-flow design for maximum heat transfer with multiple sections arranged in a reverse return configuration to assure balanced flow through each section
- C. Contractor must, when filling the system, verify that the pH level is maintained between 6.0 and 8.5, suitable for aluminum boiler.
- D. All boiler pressure parts shall be constructed in accordance with the latest revision of the ASME Boiler and Pressure Vessel Code, Section IV, and shall be so stamped.
- E. Boiler heat exchanger headers shall be fabricated steel and be completely removable for inspection. Seals shall be EPDM, rated for 400 deg F service. Push nipples or gaskets between the sections are not permitted.
- F. Boiler shall be enclosed with a single wall outer casing. It shall be fabricated from a minimum 16 gauge carbon steel. The front and top wall shall be secured in place with ¼ -20 NC bolts (sheet metal screws are not acceptable). The complete outer casing shall be finished, inside and out, with a powder coat finish. The composite structure of the boiler combustion chamber, insulating air gap and outer casing shall be of such thickness and materials to assure an outer casing temperature of not more than 50°F above ambient temperature when the boiler is operated at full rated load.
- G. An observation port shall be located on the boiler to allow for observation of the burner flame.
- H. Flue gas outlet shall be located on the rear of the boiler. Boiler to be certified for installation with Category IV venting (stack) as defined in NFPA 54 (ANSI Z221), latest edition. Contractor must provide venting (stack) certified for installation on a Category IV appliance.

2.3 BOILER CONNECTIONS

- A. Each boiler shall be provided with all necessary inlet and outlet connections. Boiler connections shall be as follows:
 - 1. One (1) water supply outlet, Victaulic with threaded pipe adapter
 - 2. One (1) water return inlet, Victaulic with threaded pipe adapter.
 - 3. One (1) relief valve outlet.
 - 4. One (1) flue gas vent outlet.
 - 5. One (1) fuel gas inlet.

2.4 BOILER TRIM

- A. Each boiler shall be provided with all necessary trim. Boiler trim shall be as follows:
 - 1. Safety relief valve shall be provided in compliance with the ASME code. Contractor to pipe to acceptable drain with air gap fitting.
 - 2. Water pressure-temperature gauge.
 - 3. Primary low water flow fuel cutoff (probe type with manual reset).
 - 4. Manual reset high limit water temperature controller.
 - 5. Operating temperature control to control the sequential operation of the burner.
 - 6. Separate inlet and outlet water temperature sensors capable of monitoring flow.
 - 7. Exhaust temperature sensor.

2.5 BOILER FUEL BURNING SYSTEM

- A. The boiler manufacturer shall furnish each boiler with an integral, power type, straight gas, fully automatic fuel burner. The fuel burner shall be an assembly of gas burner, combustion air blower, valve train, and ignition system. The burner manufacturer shall fully coordinate the burner as to the interaction of its elements with the boiler heat exchanger and the boiler control system in order to provide the required capacities, efficiencies, and performance as specified.
- B. Each burner shall be provided with an integral gas firing combustion head.
- C. Each burner shall provide adequate turbulence and mixing to achieve proper combustion without producing smoke or producing combustibles in the flue gases.
- D. Each boiler shall be provided with an integral variable speed power blower to premix combustion air and fuel within the blower. The combustion air blower shall have sufficient capacity at the rated firing rate to provide air for stoichiometric combustion plus the necessary excess air. Static and total pressure capability shall comply with the requirements of the boiler. The blower shall be a maximum of 300 watts and operate at 6000 RPM maximum without undue vibration and noise and shall be designed and constructed for exposure to temperatures normal to its location on the boiler. The operating fan speed will be tachometer sensed and be capable of being displayed at the LED display.
- E. Each burner shall of the radial-fired (down-fired) type and constructed of steel with a stainless steel inner and stainless steel mesh outer screen.
- F. Each boiler shall be provided with a "Full Modulating" firing control system whereby the firing rate is infinitely proportional at any firing rate between 20% and 100% as determined by the pulse width modulation input control signal. Both fuel input and air input must be sequenced in unison to the appropriate firing rate without the use of mechanical linkage.
- G. The Micro Processor shall use a Proportional Integral Algorithm to determine the firing rate. The control must have the following capabilities:
 - 1. Maintain single set point.
 - 2. Reset the set point based on outdoor air temperature.
 - 3. Boiler shutdown based on outdoor air temperature.
 - 4. Internal dual set point program with an external switchover. (e.g. night setback w/external clock, supplied by others).
 - 5. Alarm relay for any for any manual reset alarm function.
 - 6. Programmable Low Fire Delay to prevent short cycling based on a time and temperature factor for release to modulation.
 - 7. LED Display showing current supply and return temperatures, current set points as well as differential set points. It must also display any fault codes whether automatically reset or manually reset.
 - 8. Local Manual Operation.
 - 9. Remote Control System (Building Management / Sequencer Control) The boiler control shall be capable of accepting a 0 -10vdc remote external analog signal to control the firing rate.
 - 10. On board Domestic Hot Water Priority capable of changing from the heating pump to the DHW pump as well as changing the boiler set point from a heating temperature to a higher set point temperature to satisfy the DHW system and then return to the heating mode.
 - 11. Computer (PC) interface for programming and monitoring all functions.

2.6 MAIN GAS VALVE TRAIN

- A. Each boiler shall be provided with an integral main gas valve train. The main gas valve trains shall be factory assembled, piped, and wired. Each gas valve train shall include at least the following:
 - 1. One (1) manual shutoff valve (C-300 & C-450) or Two (2) manual shutoff valves (C_750, c-900 & C-1050)
 - 2. Two (2) safety shutoff valves. Valves equipped with dual solenoids that can independently energized for leak testing.
 - 3. Air Gas ratio control (maximum inlet pressure 14 inwc)
 - 4. One (1) low gas pressure switch (manual reset).
 - 5. One (1) high gas pressure switch (manual reset).
 - 6. Two (2) pressure test ports
- 2.7 IGNITION SYSTEM
 - A. Each boiler shall be equipped for direct spark ignition

2.8 COMBUSTION AIR CONTROL SYSTEM

- A. Each boiler shall be provided with an integral combustion air control system. The combustion air system shall be factory assembled. Each combustion air control system shall include at least the following:
 - 1. The primary control shall vary the speed of the blower based on load demand. The blower shall apply a varying negative pressure on the gas valve which will open or close to maintain zero pressure at the valve orifice, thereby increasing or decreasing the firing rate. Both the air and gas shall be premixed in the blower.
 - 2. One (1) low airflow differential pressure switch to insure that combustion air is supplied.
 - 3. High exhaust back pressure switch

2.9 BURNER CONTROL SYSTEM

- A. The control system shall be supplied with a 24 VAC transformer (120 VAC, single phase, 60 hertz primary). The 120/1/60 power supply to each boiler shall be protected by a 15 Amp circuit breaker located in the MCC (supplied by contractor).
- B. The boiler shall include an electric spark ignition system. Main flame shall be monitored and controlled by flame rod (rectification) system.
- C. Each boiler shall be provided with all necessary controls, all necessary programming sequences, and all safety interlocks. Each boiler control system shall be properly interlocked with all safeties.
- D. Each boiler control system shall provide timed sequence pre-ignition air purge of boiler combustion chamber. The combustion airflow sensor shall monitor and prove the airflow purge.

2.10 BOILER CONTROL PANEL

- A. The boiler manufacturer shall provide each boiler with an integral factory prewired control panel. The control panel shall contain at least the following components, all prewired to a numbered terminal strip:
 - 1. One (1) burner "on-off" switch.
 - 2. One (1) electronic combination temperature control, flame safeguard and system control.
 - 3. Control circuit breaker, 5 amp
 - 4. All necessary control switches, pushbuttons, relays, timers, terminal strips, etc.
 - 5. LED Display Panel to adjust set points and control operating parameters. LED display to indicate burner sequence, all service codes (0-65), fan speed, boiler set point and sensor values such as inlet, outlet, flue gas and outdoor air.

2.11 ELECTRICAL POWER

- A. Single-Point Field Power Connection: Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to boiler.
 - 1. House in NEMA 250, Type 1 enclosure.
 - 2. Wiring shall be numbered and color-coded to match wiring diagram.
 - 3. Install factory wiring outside of an enclosure in a metal raceway.
 - 4. Field power interface shall be to circuit breaker.
 - 5. Provide branch power circuit to each motor and to controls with a disconnect switch or circuit breaker.
 - 6. Provide each motor with overcurrent protection.

2.12 VENTING KITS

- A. Kit: Complete system, pipe, vent terminal, thimble, indoor plate, vent adapter, condensate trap and dilution tank, and sealant.
- B. Combustion-Air Intake: Complete system, pipe, vent terminal with screen, inlet air coupling, and sealant.

2.13 FACTORY TESTING - HYDROSTATIC

A. Each factory "packaged" boiler shall be hydrostatically tested and bear the ASME "H" stamp.

2.14 FACTORY TESTING - FIRE TESTING

- A. Each factory "packaged" boiler shall be fire tested. The boiler manufacturer shall perform this fire test under simulated operating conditions, with the boiler attached to a working chimney system and with water circulating through the boiler. The manufacturer shall provide a fire test report, including fuel and air settings and combustion test results permanently affixed to the boiler.
- B. Test and inspect factory-assembled boilers, before shipping, according to ASME Boiler and Pressure Vessel Code.

PART 3 - EXECUTION

3.1 GENERAL

- A. The installation shall be provided by the contractor in accordance with the requirements of the codes specified hereinbefore. All of the contractor's work shall be performed in a workmanlike manner, by experienced workmen previously engaged in boiler plant construction and shall be under the supervision of a qualified installation supervisor.
- B. Before boiler installation, examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, and piping and electrical connections to verify actual locations, sizes, and other conditions affecting boiler performance, maintenance, and operations.
 - 1. Final boiler locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.
- C. Examine mechanical spaces for suitable conditions where boilers will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install equipment in strict compliance with manufacturer's installation instructions.
- B. Install equipment in strict compliance with state and local codes and applicable NFPA standards. Install gas-fired boilers according to NFPA 54.
- C. Maintain manufacturer's recommended clearances around sides and over top of equipment.
- D. Install components that were removed from equipment for shipping purposes.
- E. Install components that were furnished loose with equipment for field installation.
- F. Provide all electrical control and power interconnect wiring. Install control wiring to field-mounted electrical devices.
- G. Contractor must, when filling the system, verify that the pH level is maintained between 6.0 and 8.5, suitable for aluminum boiler.
- H. Install boilers level on concrete base. Concrete base is specified in Division 15 Section "Common Work Results For Plumbing and HVAC".
- I. Vibration Isolation: Elastomeric isolation pads with a minimum static deflection of 0.25 inch. Vibration isolation devices and installation requirements are specified in Division 15 Section "Mechanical Vibration and Seismic Controls."
- J. Assemble and install boiler trim per manufacturer's instruction.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 15 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to boiler to allow service and maintenance.
- C. Install piping from equipment drain connection to nearest floor drain. Piping shall be at least full size of connection. Provide an isolation valve if required.
- D. Connect piping to boilers, except safety relief valve connections, with flexible connectors of materials suitable for service. Flexible connectors and their installation are specified in Division 15 Section "Basic Mechanical Materials and Methods."
- E. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of gas train connection. Provide a reducer if required.
- F. Connect hot-water piping to supply- and return-boiler tappings with shutoff valve and union or flange at each connection.
- G. Install piping from safety relief valves to nearest floor drain.
- H. Boiler Venting:
 - 1. Install flue venting kit and combustion-air intake.
 - 2. Connect full size to boiler connections.
- I. Ground equipment according to Division 16 Section "Grounding and Bonding."
- J. Connect wiring according to Division 16 Section "Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Perform installation and startup checks according to manufacturer's written instructions.
 - 2. Leak Test: Hydrostatic test. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: Start units to confirm proper motor rotation and unit operation. Adjust air-fuel ratio and combustion.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - a. Check and adjust initial operating set points and high- and low-limit safety set points of fuel supply, water level and [water temperature] [steam pressure].
 - b. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

- C. Remove and replace malfunctioning units and retest as specified above.
- D. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other than normal occupancy hours for this purpose.
- E. Performance Tests:
 - 1. Engage a factory-authorized service representative to inspect component assemblies and equipment installations, including connections, and to conduct performance testing.
 - 2. Boilers shall comply with performance requirements indicated, as determined by field performance tests. Adjust, modify, or replace equipment to comply.
 - 3. Perform field performance tests to determine capacity and efficiency of boilers.
 - a. Test for full capacity.
 - b. Test for boiler efficiency at low fire 20, 40, 60, 80, 100, 80, 60, 40, and 20 percent of full capacity. Determine efficiency at each test point.
 - 4. Repeat tests until results comply with requirements indicated.
 - 5. Provide analysis equipment required to determine performance.
 - 6. Provide temporary equipment and system modifications necessary to dissipate the heat produced during tests if building systems are not adequate.
 - 7. Notify District in advance of test dates.
 - 8. Document test results in a report and submit to District.

3.5 START-UP, INSTRUCTION AND WARRANTY SERVICE

A. The boiler manufacturer or his authorized representative shall provide start-up and instruction for each new boiler, including burner and boiler control system. The manufacturer shall dispatch factory-trained technicians in the direct employ of the manufacturer's local authorized representative for field services as specified herein. Start-up and instruction shall cover all components assembled and furnished by the manufacturer whether or not of his own manufacture.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain boilers.

SECTION 15815 METAL DUCTS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round and flat-oval ducts and fittings.
 - 3. Sheet metal materials.
 - 4. Duct liner.
 - 5. Sealants and gaskets.
 - 6. Hangers and supports.
 - 7. Seismic-restraint devices.
- B. Related Sections:
 - 1. Division 15 Section "Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.
 - 2. Division 15 Section "Testing, Adjusting, and Balancing" for testing, adjusting, and balancing requirements for metal ducts.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2007.

1.4 SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
 - 3. Seismic-restraint devices.
- B. Shop Drawings:

- 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
- 2. Factory- and shop-fabricated ducts and fittings.
- 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
- 4. Elevation of top of ducts.
- 5. Dimensions of main duct runs from building grid lines.
- 6. Fittings.
- 7. Reinforcement and spacing.
- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.
- C. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints.
- D. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- E. Welding certificates.
- F. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.

- 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2007, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-Up."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2007, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

- 2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS
 - A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
 - B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-5, "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."
 - D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).
- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Transverse Joints Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Seams Round Duct and Fittings,"

for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

- 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
- 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with buttwelded longitudinal seams.
- E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 DUCT LINER

- A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. CertainTeed Corporation; Insulation Group.
 - b. Johns Manville.
 - c. Knauf Insulation.
 - d. Owens Corning.
 - 2. Maximum Thermal Conductivity:
 - a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

- 3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
- 4. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 - a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Insulation Pins and Washers:
 - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-19, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 - 3. Butt transverse joints without gaps, and coat joint with adhesive.
 - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure buttededge overlapping.
 - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 - 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
 - 7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
 - 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.
 - c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
 - 9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 - a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
 - 10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.5 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 - 10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- F. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electro-galvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.7 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2. Ductmate Industries, Inc.
 - 3. Hilti Corp.
 - 4. Kinetics Noise Control.
 - 5. Loos & Co.; Cableware Division.
 - 6. Mason Industries.
 - 7. TOLCO; a brand of NIBCO INC.
 - 8. Unistrut Corporation; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of the ICC Evaluation Service or an agency acceptable to authorities having jurisdiction.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.

- D. Restraint Cables: ASTM A 603, galvanized-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
- E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or reinforcing steel angle clamped to hanger rod.
- F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round and flat-oval ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 15 Section "Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. Outdoor, Supply-Air Ducts: Seal Class A.
 - 3. Outdoor, Exhaust Ducts: Seal Class C.
 - 4. Outdoor, Return-Air Ducts: Seal Class C.
 - 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
 - 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
 - 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
 - 8. Unconditioned Space, Return-Air Ducts: Seal Class B.
 - 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
 - 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
 - 11. Conditioned Space, Exhaust Ducts: Seal Class B.
 - 12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

- A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 - 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 - 2. Brace a change of direction longer than 12 feet.
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an evaluation service member of the ICC Evaluation Service or an agency acceptable to authorities having jurisdiction.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:
 - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Division 15 Section "Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer.

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 100 percent of total installed duct area for each designated pressure class.
 - b. Supply Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 100 percent of total installed duct area for each designated pressure class.
 - c. Return Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections[, selected by Architect from sections installed,] totaling no less than 100 percent of total installed duct area for each designated pressure class.
 - d. Exhaust Ducts with a Pressure Class of 2-Inch or Higher: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 100 percent of total installed duct area for each designated pressure class.
 - e. Outdoor Air Ducts with a Pressure Class of 2-Inch or Higher: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 100 percent of total installed duct area for each designated pressure class.
 - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 4. Test for leaks before applying external insulation.
 - 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 - 6. Give seven days' advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - Test sections of metal duct system, chosen randomly by District's representative, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.9 DUCT CLEANING

- A. Clean new and existing duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 15 Section "Duct Accessories" for access panels and doors.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 - 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:
 - 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 - 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.
- E. Mechanical Cleaning Methodology:
 - 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 - 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 - 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 - 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 - 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 - 6. Provide drainage and cleanup for wash-down procedures.
 - 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.10 START UP

- A. Air Balance: Comply with requirements in Division 15 Section "Testing, Adjusting, and Balancing."
- 3.11 DUCT SCHEDULE
 - A. Supply Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 1-inch wg or 1.25 times the equipment external static pressure, whichever is greater.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Constant-Volume Air-Handling Units:
 - a. Pressure Class: Positive 2-inch wg or 1.25 times the equipment external static pressure, whichever is greater.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 - a. Pressure Class: Positive 4-inch wg or 1.25 times the equipment external static pressure, whichever is greater.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
 - 4. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 2-inch wg or 1.25 times the equipment external static pressure, whichever is greater.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
 - B. Return Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 1-inch.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.

- d. SMACNA Leakage Class for Round and Flat Oval: 6.
- 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- C. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 2-inch wg or 1.25 times the equipment external static pressure, whichever is greater
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch or 1.25 times the equipment external static pressure, whichever is greater.
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
 - 3. Ducts Connected to Commercial Kitchen Hoods: Comply with NFPA 96.
 - a. Exposed to View: Type 304, stainless-steel sheet, No. 4 finish.
 - b. Concealed: Type 304, stainless-steel sheet, No. 2D finish.
 - c. Welded seams and joints.
 - d. Pressure Class: Positive or negative 2-inch wg or 1.25 times the equipment external static pressure, whichever is greater.
 - e. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - f. SMACNA Leakage Class: 3.
 - 4. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- D. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch.

- b. Minimum SMACNA Seal Class: A.
- c. SMACNA Leakage Class for Rectangular: 6.
- d. SMACNA Leakage Class for Round and Flat Oval: 3.
- 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- E. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
- F. Liner:
 - 1. Supply Air Ducts: Fibrous glass, Type I, 1 inch thick.
 - 2. Return Air Ducts: Fibrous glass, Type I, 1 inch thick.
 - 3. Supply Fan Plenums: Fibrous glass, Type II, 1 inch thick.
 - 4. Return- and Exhaust-Fan Plenums: Fibrous glass, Type II, 2 inches thick.
 - 5. Transfer Ducts: Fibrous glass, Type I, 1 inch thick.
 - 6. Outdoor Supply and Return Air Ducts: Fibrous glass, Type I, 2 inches thick.
- G. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 - c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 - 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.

- c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

H. Branch Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-6, "Branch Connections."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
- Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION

SECTION 15820 DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backdraft and pressure relief dampers.
 - 2. Manual volume dampers.
 - 3. Control dampers.
 - 4. Fire dampers.
 - 5. Smoke dampers.
 - 6. Combination fire and smoke dampers.
 - 7. Flange connectors.
 - 8. Duct silencers.
 - 9. Turning vanes.
 - 10. Remote damper operators.
 - 11. Duct-mounted access doors.
 - 12. Flexible connectors.
 - 13. Flexible ducts.
 - 14. Duct accessory hardware.
- B. Related Sections:
 - 1. Division 13 Section "Fire Alarm" for duct-mounted fire and smoke detectors.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control damper installations.

- d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
- e. Duct security bars.
- f. Wiring Diagrams: For power, signal, and control wiring.
- C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
- D. Source quality-control reports.
- E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and finish for exposed ducts.
- D. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- E. Extruded Aluminum: Comply with ASTM B 22, Alloy 6063, Temper T6.

- F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Pottorff; a division of PCI Industries, Inc.
 - 3. Ruskin Company.
- B. Description: Gravity balanced.
- C. Maximum Air Velocity: 3000 fpm.
- D. Maximum System Pressure: 2-inch wg.
- E. Frame: 0.052-inch-thick, galvanized sheet steel, with welded corners and mounting flange.
- F. Blades: Multiple single-piece blades, center-pivoted, maximum 6-inch width, 0.025-inch-thick, roll-formed aluminum with sealed edges.
- G. Blade Action: Parallel.
- H. Blade Seals: Felt.
- I. Blade Axles:
 - 1. Material: Nonferrous metal.
 - 2. Diameter: 0.20 inch.
- J. Tie Bars and Brackets: Aluminum.
- K. Return Spring: Adjustable tension.
- L. Bearings: Steel ball or synthetic pivot bushings.
- M. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Electric actuators.
 - 4. Chain pulls.
 - 5. Screen Mounting: Rear mounted.
 - 6. Screen Material: Galvanized steel.
 - 7. Screen Type: Bird.
 - 8. 90-degree stops.

2.3 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. McGill AirFlow LLC.
 - b. Nailor Industries Inc.
 - c. Pottorff; a division of PCI Industries, Inc.
 - d. Ruskin Company.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Hat-shaped, galvanized-steel channels, 0.064-inch minimum thickness.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized-steel, 0.064 inch thick.
 - 6. Blade Axles: Galvanized steel.
 - 7. Bearings:
 - a. Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 8. Tie Bars and Brackets: Galvanized steel.
- B. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. McGill AirFlow LLC.
 - b. Nailor Industries Inc.
 - c. Pottorff; a division of PCI Industries, Inc.
 - d. Ruskin Company.
 - 2. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Hat shaped.
 - b. Galvanized-steel channels, 0.064 inch thick.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.

- 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized, roll-formed steel, 0.064 inch thick.
- 6. Blade Axles: Stainless steel.
- 7. Bearings:
 - a. Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Blade Seals: Neoprene.
- 9. Jamb Seals: Cambered stainless steel.
- 10. Tie Bars and Brackets: Galvanized steel.
- 11. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.

2.4 CONTROL DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. McGill AirFlow LLC.
 - 3. Nailor Industries Inc.
 - 4. Ruskin Company.
 - 5. Young Regulator Company.
- B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- C. Frames:
 - 1. Hat shaped.
 - 2. Galvanized-steel channels, 0.064 inch thick.
 - 3. Mitered and welded corners.
- D. Blades:
 - 1. Multiple blade with maximum blade width of 8 inches.
 - 2. Opposed-blade design.
 - 3. Galvanized steel.
 - 4. 0.064 inch thick.
 - 5. Blade Edging: Closed-cell neoprene edging.
- E. Blade Axles: 1/2-inch- diameter; stainless steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:

- 1. Stainless-steel sleeve.
- 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 3. Thrust bearings at each end of every blade.

2.5 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Greenheck Fan Corporation.
 - 2. Nailor Industries Inc.
 - 3. Pottorff; a division of PCI Industries, Inc.
 - 4. Ruskin Company.
- B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.
- D. Fire Rating: 1-1/2 and 3 hours.
- E. Frame: Multiple-blade type; fabricated with roll-formed, 0.034-inch- thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.052 or 0.138 inch thick, as indicated, and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- thick, galvanized-steel blade connectors.
- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.

2.6 COMBINATION FIRE AND SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Nailor Industries Inc.
 - 3. Pottorff; a division of PCI Industries, Inc.
 - 4. Ruskin Company.
- B. Type: Static and dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.
- D. Fire Rating: 1-1/2 and 3 hours.
- E. Frame: Multiple-blade type; fabricated with roll-formed, 0.034-inch- thick galvanized steel; with mitered and interlocking corners.
- F. Heat-Responsive Device: Electric resettable link and switch package, factory installed, rated.
- G. Smoke Detector: Integral, factory wired for single-point connection.
- H. Blades: Roll-formed, horizontal, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- thick, galvanized-steel blade connectors.
- I. Leakage: Class I.
- J. Rated pressure and velocity to exceed design airflow conditions.
- K. Mounting Sleeve: Factory-installed, 0.052-inch- thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- L. Master control panel for use in dynamic smoke-management systems.
- M. Damper Motors: Modulating or two-position action.
- N. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 15 Section "Common Motor Requirements for Plumbing and HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 16 Sections.
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
 - 7. Electrical Connection: 115 V, single phase, 60 Hz.
- O. Accessories:
 - 1. Auxiliary switches for signaling fan control or position indication.
 - 2. Test and reset switches, damper mounted.

2.7 CORRIDOR DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Air Balance Inc.; a division of Mestek, Inc.
- 2. Cesco Products; a division of Mestek, Inc.
- 3. Nailor Industries Inc.
- 4. Ruskin Company.
- B. General Requirements: Label combination fire and smoke dampers according to UL 555 for 1-1/2-hour rating by an NRTL.
- C. Heat-Responsive Device: Electric resettable link and switch package, factory installed, rated.
- D. Frame: Multiple-blade type; fabricated with roll-formed, 0.034-inch thick galvanized steel; with mitered and interlocking corners.
- E. Blades: Roll-formed, horizontal, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- thick, galvanized-steel blade connectors.
- F. Mounting Sleeve: Factory-installed, 0.052-inch- thick, galvanized sheet steel; length to suit wall or floor application.
- G. Damper Motors: Two-position action.
- H. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 15 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 15 Section "HVAC Instrumentation and Controls.
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
 - 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 - 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
 - 7. Electrical Connection: 115 V, single phase, 60 Hz.

2.8 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ductmate Industries, Inc.
 - 2. Nexus PDQ; Division of Shilco Holdings Inc.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.9 DUCT SILENCERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Industrial Noise Control, Inc.
 - 2. McGill AirFlow LLC.
 - 3. Ruskin Company.
 - 4. Vibro-Acoustics.
- C. General Requirements:
 - 1. Factory fabricated.
 - 2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84.
 - 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2007.
- D. Shape:
 - 1. Rectangular straight with splitters or baffles.
 - 2. Round straight with center bodies or pods.
 - 3. Rectangular elbow with splitters or baffles.
 - 4. Round elbow with center bodies or pods.
 - 5. Rectangular transitional with splitters or baffles.
- E. Rectangular Silencer Outer Casing: ASTM A 653/A 653M, G90, galvanized sheet steel, 0.034 inch thick.
- F. Round Silencer Outer Casing: ASTM A 653/A 653M, G90, galvanized sheet steel.
 - 1. Sheet Metal Thickness for Units up to 24 Inches in Diameter: 0.034 inch thick.
 - 2. Sheet Metal Thickness for Units 26 through 40 Inches in Diameter: 0.040 inch thick.
 - 3. Sheet Metal Thickness for Units 42 through 52 Inches in Diameter: 0.052 inch thick.
 - 4. Sheet Metal Thickness for Units 54 through 60 Inches in Diameter: 0.064 inch thick.
- G. Inner Casing and Baffles: ASTM A 653/A 653M, G90 galvanized sheet metal, 0.034 inch thick, and with 1/8-inch- diameter perforations.
- H. Special Construction:
 - 1. Suitable for outdoor use.
 - 2. High transmission loss[to achieve STC 45].
- I. Connection Sizes: Match connecting ductwork unless otherwise indicated.
- J. Principal Sound-Absorbing Mechanism:

- 1. Controlled impedance membranes and broadly tuned resonators without absorptive media.
- 2. Dissipative type with fill material.
 - a. Fill Material: Inert and vermin-proof fibrous material, packed under not less than 5 percent compression.
 - b. Erosion Barrier: Polymer bag enclosing fill, and heat sealed before assembly.
- 3. Lining: Mylar.
- K. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.
 - 1. Flange connections.
 - 2. Suspended Units: Factory-installed suspension hooks or lugs attached to frame in quantities and spaced to prevent deflection or distortion.
 - 3. Reinforcement: Cross or trapeze angles for rigid suspension.
- L. Accessories:
 - 1. Integral 1-1/2 hour fire damper with access door. Access door to be high transmission loss to match silencer.
 - 2. Factory-installed end caps to prevent contamination during shipping.
 - 3. Removable splitters.
 - 4. Airflow measuring devices.
- M. Source Quality Control: Test according to ASTM E 477.
 - 1. Testing of mockups to be witnessed by Construction Manager.
 - 2. Record acoustic ratings, including dynamic insertion loss and generated-noise power levels with an airflow of at least 2000-fpm face velocity.
 - 3. Leak Test: Test units for airtightness at 200 percent of associated fan static pressure or 6-inch wg static pressure, whichever is greater.

2.10 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. METALAIRE, Inc.
 - 4. SEMCO Incorporated.
 - 5. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."
- E. Vane Construction: Double wall.

2.11 REMOTE DAMPER OPERATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Pottorff; a division of PCI Industries, Inc.
 - 2. Ventfabrics, Inc.
 - 3. Young Regulator Company.
- B. Description: Cable system designed for remote manual damper adjustment.
- C. Tubing: Brass.
- D. Cable: Stainless steel.
- E. Wall-Box Mounting: Recessed, 3/4 inches deep.
- F. Wall-Box Cover-Plate Material: Stainless steel.

2.12 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cesco Products; a division of Mestek, Inc.
 - 2. Ductmate Industries, Inc.
 - 3. Flexmaster U.S.A., Inc.
 - 4. Greenheck Fan Corporation.
 - 5. Nailor Industries Inc.
 - 6. Pottorff; a division of PCI Industries, Inc.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-10, "Duct Access Doors and Panels," and 2-11, "Access Panels - Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.

- c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches[with outside and inside handles].
- d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.
- C. Pressure Relief Access Door:
 - 1. Door and Frame Material: Galvanized sheet steel.
 - 2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
 - 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
 - 4. Factory set at 10-inch wg.
 - 5. Doors close when pressures are within set-point range.
 - 6. Hinge: Continuous piano.
 - 7. Latches: Cam.
 - 8. Seal: Neoprene or foam rubber.
 - 9. Insulation Fill: 1-inch-thick, fibrous-glass or polystyrene-foam board.

2.13 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. Ventfabrics, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches wide attached to 2 strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd.
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd.
 - 2. Minimum Tensile Strength: 500 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.
- G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.

- 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
- 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.14 FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Casco, C.A. Schroeder, Inc.
 - 2. Flexmaster U.S.A., Inc.
- B. Insulated, Flexible Duct: UL 181, Class 1, spun-bonded nonwoven nylon fabric mechanically locked (no adhesive) to helically wound spring steel wire; fibrous-glass insulation; UL rated Class 1 metalized polyester vapor barrier sleeve.
 - 1. Pressure Rating: 2-inch wg positive and 1/2-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 10 to plus 200 deg F.
 - 4. Insulation R-value: Comply with 2010 CEC.
 - 5. Maximum length: 6 ft.
- C. Flexible Duct Connectors:
 - 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

2.15 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire and smoke dampers according to UL listing.
- H. Connect ducts to duct silencers rigidly.
- I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream and downstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 7. At each change in direction and at maximum 50-foot spacing.
 - 8. Upstream and downstream from turning vanes.
 - 9. Upstream or downstream from duct silencers.
 - 10. Control devices requiring inspection.
 - 11. Elsewhere as indicated.
- J. Install access doors with swing against duct static pressure.
- K. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- L. Label access doors according to Division 15 Section "Identification for Plumbing and HVAC Piping and Equipment" to indicate the purpose of access door.

- M. Install flexible connectors to connect ducts to equipment.
- N. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- O. Connect diffusers or light troffer boots to ducts[directly or] with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- P. Connect flexible ducts to metal ducts with draw bands adhesive plus sheet metal screws.
- Q. Install duct test holes where required for testing and balancing purposes.
- R. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.
 - 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION

SECTION 15890 HVAC AIR-DISTRIBUTION SYSTEM CLEANING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes cleaning HVAC air-distribution equipment, ducts, plenums, and system components.

1.2 DEFINITIONS

- A. ASCS: Air systems cleaning specialist.
- B. NADCA: National Air Duct Cleaners Association.

1.3 SUBMITTALS

- A. Qualification Data: For an ASCS.
- B. Strategies and procedures plan.
- C. Cleanliness verification report.

1.4 QUALITY ASSURANCE

- A. ASCS Qualifications: A certified member of NADCA.
 - 1. Certification: Employ an ASCS certified by NADCA on a full-time basis.
 - 2. Supervisor Qualifications: Certified as an ASCS by NADCA.
- B. UL Compliance: Comply with UL 181 and UL 181A for fibrous-glass ducts.
- C. Cleaning Conference: Conduct conference at Project site.
 - 1. Review methods and procedures related to HVAC air-distribution system cleaning including, but not limited to, review of the cleaning strategies and procedures plan.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine HVAC air-distribution equipment, ducts, plenums, and system components to determine appropriate methods, tools, and equipment required for performance of the Work.

- B. Perform "Project Evaluation and Recommendation" according to NADCA ACR 2006.
- C. Prepare written report listing conditions detrimental to performance of the Work.
- D. Proceed with work only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Prepare a written plan that includes strategies and step-by-step procedures. At a minimum, include the following:
 - 1. Supervisor contact information.
 - 2. Work schedule including location, times, and impact on occupied areas.
 - 3. Methods and materials planned for each HVAC component type.
 - 4. Required support from other trades.
 - 5. Equipment and material storage requirements.
 - 6. Exhaust equipment setup locations.
- B. Use the existing service openings, as required for proper cleaning, at various points of the HVAC system for physical and mechanical entry and for inspection.
- C. Comply with NADCA ACR 2006, "Guidelines for Constructing Service Openings in HVAC Systems" Section.

3.3 CLEANING

- A. Comply with NADCA ACR 2013.
- B. Remove visible surface contaminants and deposits from within the HVAC system.
- C. Systems and Components to Be Cleaned:
 - 1. Air devices for supply and return air.
 - 2. Air-terminal units.
 - 3. Ductwork:
 - a. Supply-air ducts, including turning vanes, to the air-handling unit.
 - b. Return-air ducts to the air-handling unit.
 - c. Exhaust-air ducts.
- D. Collect debris removed during cleaning. Ensure that debris is not dispersed outside the HVAC system during the cleaning process.
- E. Particulate Collection:
 - 1. For particulate collection equipment, include adequate filtration to contain debris removed. Locate equipment downwind and away from all air intakes and other points of entry into the building.
 - 2. HEPA filtration with 99.97 percent collection efficiency for particles sized 0.3 micrometer or larger shall be used where the particulate collection equipment is exhausting inside the building,
- F. Control odors and mist vapors during the cleaning and restoration process.

- G. Mark the position of manual volume dampers and air-directional mechanical devices inside the system prior to cleaning. Restore them to their marked position on completion of cleaning.
- H. System components shall be cleaned so that all HVAC system components are visibly clean. On completion, all components must be returned to those settings recorded just prior to cleaning operations.
- I. Clean all air-distribution devices, registers, grilles, and diffusers.
- J. Clean visible surface contamination deposits according to NADCA ACR 2006 and the following:
 - 1. Clean air-handling units, airstream surfaces, components, condensate collectors, and drains.
 - 2. Ensure that a suitable operative drainage system is in place prior to beginning washdown procedures.
 - 3. Clean evaporator coils, reheat coils, and other airstream components.
- K. Duct Systems:
 - 1. Create service openings in the HVAC system as necessary to accommodate cleaning.
 - 2. Mechanically clean duct systems specified to remove all visible contaminants so that the systems are capable of passing the HVAC System Cleanliness Tests (see NADCA ACR 2006).
- L. Debris removed from the HVAC system shall be disposed of according to applicable Federal, state, and local requirements.
- M. Mechanical Cleaning Methodology:
 - 1. Source-Removal Cleaning Methods: The HVAC system shall be cleaned using sourceremoval mechanical cleaning methods designed to extract contaminants from within the HVAC system and to safely remove these contaminants from the facility. No cleaning method, or combination of methods, shall be used that could potentially damage components of the HVAC system or negatively alter the integrity of the system.
 - a. Use continuously operating vacuum-collection devices to keep each section being cleaned under negative pressure.
 - b. Cleaning methods that require mechanical agitation devices to dislodge debris that is adhered to interior surfaces of HVAC system components shall be equipped to safely remove these devices. Cleaning methods shall not damage the integrity of HVAC system components or damage porous surface materials such as duct and plenum liners.
 - 2. Cleaning Mineral-Fiber Insulation Components:
 - a. Fibrous-glass thermal or acoustical insulation elements present in equipment or ductwork shall be thoroughly cleaned with HEPA vacuuming equipment while the HVAC system is under constant negative pressure and shall not be permitted to get wet according to NADCA ACR 2006.
 - b. Cleaning methods used shall not cause damage to fibrous-glass components and will render the system capable of passing the HVAC System Cleanliness Tests (see NADCA ACR 2006).
 - c. Fibrous materials that become wet shall be discarded and replaced.
- N. Antimicrobial Agents, Coatings, and Sanitizers:

- Apply antimicrobial agents, coatings, and sanitizers if active fungal growth is reasonably suspected or where unacceptable levels of fungal contamination have been verified. Apply antimicrobial agents and coatings according to manufacturer's written recommendations and EPA registration listing after the removal of surface deposits and debris.
- 2. When used, antimicrobial treatments, coatings, and sanitizers shall be applied after the system is rendered clean.
- 3. Apply antimicrobial agents, coatings, and sanitizers directly onto surfaces of interior ductwork. Fogging is prohibited.
- 4. Sanitizing agent products shall be registered by the EPA as specifically intended for use in HVAC systems and ductwork.

3.4 CLEANLINESS VERIFICATION

- A. Verify cleanliness according to NADCA ACR 2006, "Verification of HVAC System Cleanliness" Section.
- B. Verify HVAC system cleanliness after mechanical cleaning and before applying any treatment or introducing any treatment-related substance to the HVAC system, including biocidal agents, coatings, and sanitizers.
- C. Perform visual inspection for cleanliness. If no contaminants are evident through visual inspection, the HVAC system shall be considered clean. If visible contaminants are evident through visual inspection, those portions of the system where contaminants are visible shall be re-cleaned and subjected to re-inspection for cleanliness.
- D. Prepare a written cleanliness verification report. At a minimum, include the following:
 - 1. Written documentation of the success of the cleaning.
 - 2. Site inspection reports, initialed by supervisor, including notation on areas of inspection, as verified through visual inspection.
 - 3. Surface comparison test results if required.
 - 4. Gravimetric analysis (nonporous surfaces only).
 - 5. System areas found to be damaged.
- E. Photographic Documentation: Provide photos of cleaned ducts.

3.5 RESTORATION

- A. Restore and repair HVAC air-distribution equipment, ducts, plenums, and components according to NADCA ACR 2006, "Restoration and Repair of Mechanical Systems" Section.
- B. Restore service openings capable of future reopening. Comply with requirements in Division 15 Section "Metal Ducts." Include location of service openings in Project closeout report.
- C. Replace fibrous-glass materials that cannot be restored by cleaning or resurfacing. Comply with requirements in Division 15 Sections "Metal Ducts"
- D. Replace damaged insulation according to "Division 15 Section "HVAC Insulation."
- E. Ensure that closures do not hinder or alter airflow.
- F. New closure materials, including insulation, shall match opened materials and shall have removable closure panels fitted with gaskets and fasteners.

END OF SECTION

SECTION 15900 HVAC INSTRUMENTATION AND CONTROLS

PART 1 GENERAL

- 1.1 SCOPE: Scope of Work Covered by this Section:
 - 1. DDC system shall be Owner Furnished and Contractor Installed (OFCI).
 - 2. Provide a totally native BACnet-based system as an extension to the existing control system at North High School. Integrate the new DDC controllers to existing Alerton BACnet System. All building controllers, application controllers, and all input/output devices shall communicate using the protocols and network standards as defined by ANSI/ASHRAE Standard 135, BACnet. In other words, all workstations and controllers, including unitary controllers, shall be native BACnet devices. No gateways shall be used for communication to controllers installed under this section. Provide all necessary BACnet-compliant hardware and software to meet the system's functional specifications. Provide Protocol Implementation Conformance Statement (PICS) for Windows-based control software and every controller in system, including unitary controllers.
 - 3. Prepare individual hardware layouts, interconnection drawings, and software configuration from project design data.
 - 4. Implement the detailed design for all analog and binary objects, system databases, graphic displays, logs, and management reports based on control descriptions, logic drawings, configuration data, and bid documents.
 - 5. Design, provide, and install all equipment cabinets, panels, data communication network cables needed, and all associated hardware.
 - 6. Provide and install all interconnecting cables between supplied cabinets, application controllers, and input/output devices.
 - 7. Provide and install all interconnecting cables between all operator's terminals and peripheral devices supplied under this section.
 - 8. Provide complete manufacturer's specifications for all items that are supplied.
 - 9. Provide supervisory specialists and technicians at the job site to assist in all phases of system installation, startup, and commissioning.
 - 10. Provide a comprehensive operator and technician training program Provide asbuilt documentation, operator's terminal software, diagrams, and all other associated project operational documentation (such as technical manuals) on approved media, the sum total of which accurately represents the final system.
 - 11. Install all District supplied controllers and sensors as required for complete and functional control system.
 - 11. District shall purchase and supply all controllers, actuators, control valves, sensors and other devices as required. Coordinate with District for the required controllers, sensors, etc.

1.2 REFERENCE STANDARDS

- A. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE):
- B. ANSI/ASHRAE Standard 135, BACnet.
- C. Uniform Building Code (UBC), including local amendments.
- D. UL 916 Underwriters Laboratories Standard for Energy Management Equipment. Canada and the US.
- E. National Electrical Code (NEC).
- F. FCC Part 15, Subpart J, Class A.
- G. EMC Directive 89/336/EEC (European CE Mark).
- H. UL-864 UUKL listing for Smoke Controls for any equipment used in smoke control

sequences.

1.3 SUBMITTALS

- A. Submit under provisions of Section 01300.
- B. Product Data: Manufacturer's data sheets on each product to be used, including:
 - 1. Preparation instructions and recommendations.
 - 2. Storage and handling requirements and recommendations.
 - 3. Installation methods.
- C. Drawings:
 - 1. The system supplier shall submit engineered drawings, control sequence, and bill of materials for approval.
 - 2. Drawings shall be submitted in the following standard sizes: 11 x 17 inch (ANSI B).
 - 3. Eight complete sets (copies) of submittal drawings shall be provided.
 - 4. Drawings shall be available on CD-ROM.
- D. System Documentation: Include the following in submittal package:
 - 1. System configuration diagrams in simplified block format.
 - 2. All input/output object listings and an alarm point summary listing.
 - 3. Electrical drawings that show all system internal and external connection points, terminal block layouts, and terminal identification.
 - 4. Complete bill of materials, valve schedule and damper schedule.
 - 5. Manufacturer's instructions and drawings for installation, maintenance, and operation of all purchased items.
 - 6. Overall system operation and maintenance instructions-including preventive maintenance and troubleshooting instructions.
 - 7. For all system elements-operator's workstations, building controllers, application controllers, routers, and repeaters-provide BACnet Protocol Implementation Conformance Statements (PICS) as per ANSI/ASHRAE Standard 135.
 - 8. Provide complete description and documentation of any proprietary (non-BACnet) services and/or objects used in the system.
 - 9. A list of all functions available and a sample of function block programming that shall be part of delivered system.
- E. Project Management: The vendor shall provide a detailed project design and installation schedule with time markings and details for hardware items and software development phases.

1.4 QUALITY ASSURANCE

- A. The contractor shall provide full-time, on-site, experienced project manager for this work, responsible for direct supervision of the design, installation, start-up and commissioning of the BAS system.
- B. The Building Automation System (BAS) system shall be designed, installed, commissioned, and serviced by manufacturer rained personnel. System provider shall have an in-place support facility within 2 hours response time of the site with technical staff, spare parts inventory, and necessary test and diagnostic equipment.
- C. Materials and equipment shall be manufacturer's latest standard design that complies with the specification requirements.
- D. All electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference and be so labeled.
- E. Control system shall be engineered, programmed and supported completely by representative's local offices that must be within 100 miles (161 km) of project site.

1.5 WARRANTY

A. Warranty shall cover all costs for parts, labor, associated travel, and expenses for a period of one year from completion of system acceptance. Hardware and software personnel supporting this warranty agreement shall provide on-site or off-site service in a timely manner after failure notification to the vendor. The maximum acceptable response time to provide this service at the site shall be 24 hours, Monday through Friday and 48 hours on Saturday and Sunday. Warranty shall apply equally to both hardware and software.

PART 2 PRODUCTS

- 2.1 MANUFACTURERS
 - A. Manufacturer: Alerton Technologies.
- 2.2 SYSTEM DESCRIPTION
 - A. A distributed logic control system complete with all software and hardware functions shall be provided and installed. System shall be completely based on ANSI/ASHRAE Standard 135-2008, BACnet and achieved listing under the BACnet Testing Laboratories BACnet Advanced Workstation Software (B-AWS). This system is to control all mechanical equipment, including but limited to unitary equipment such as VAV boxes, heat pumps, fancoils, AC units, air handlers, boilers, chillers, and any other listed equipment using native BACnet-compliant components. Non-BACnet-compliant or proprietary equipment or systems (including gateways) shall not be acceptable and are specifically prohibited.
 - B. Building controllers shall include complete energy management software, including scheduling building control strategies with optimum start and logging routines. All energy management software and firmware shall be resident in field hardware and shall not be dependent on the operator's terminal. Operator's terminal software is to be used for access to field-based energy management functions only. Provide zone-by-zone direct digital logic control of space temperature, scheduling, runtime accumulation, equipment alarm reporting, and override timers for after-hours usage.
 - C. All application controllers for every terminal unit (including but not limited to VAV, HP, UV) air handler, all central plant equipment, and any other piece of controlled equipment shall be fully programmable. Application controllers shall be mounted next to controlled equipment and communicate with building controller through BACnet LAN.
- 2.3 UNIT APPLICATION CONTROLLERS (FURNACES, HEAT PUMPS, AC UNITS, EXHAUST FANS AND OUTDOOR LIGHTING CONTROLS)
 - A. Provide one native BACnet application controller for each piece of unitary mechanical equipment of grouped points that adequately covers all points shown on the control drawings. All controllers shall interface to building controller through MS/TP LAN using BACnet protocol. No gateways shall be used. Controllers shall include input, output and selfcontained logic program as needed for complete control of unit.
 - B. BACnet Conformance:
 - 1. Application controllers shall, as a minimum, support MS/TP BACnet LAN types. They shall communicate directly using this BACnet LAN at 9.6, 19.2, 38.4 and 76.8 Kbps, as a native BACnet device. Application controllers shall be approved by the BTL as meeting the BACnet Application Specific Controller requirements and support all BACnet services necessary to provide the following BACnet functional groups:
 - a. Files Functional Group.
 - b. Reinitialize Functional Group.
 - c. Device Communications Functional Group.

- 2. Please refer to Section 22.2, BACnet Functional Groups in the BACnet standard, for a complete list of the services that must be directly supported to provide each of the functional groups listed above. All proprietary services, if used in the system, shall be thoroughly documented and provided as part of the submittal data. All necessary tools shall be supplied for working with proprietary information.
- 3. Standard BACnet object types supported shall include, as a minimum, Analog Input, Analog Output, Analog Value, Binary Input, Binary Output, Binary Value, Device, File, and Program Object Types. All proprietary object types, if used in the system, shall be thoroughly documented and provided as part of the submittal data. All necessary tools shall be supplied for working with proprietary information.
- C. Application controllers shall include universal inputs with 10-bit resolution that can accept 3K and 10K thermistors, 0-5VDC, 4-20mA, dry contact signals and a minimum of 3 pulse inputs. Any input on controller may be either analog or digital. Controller shall also include support and modifiable programming for interface to intelligent room sensor. Controller shall include binary outputs on board with analog outputs as needed.
- D. All program sequences shall be stored on board controller in EEPROM. No batteries shall be needed to retain logic program. All program sequences shall be executed by controller 10 times per second and shall be capable of multiple PID loops for control of multiple devices. Programming of application controller shall be completely modifiable in the field over installed BACnet LANs or remotely through modem interface. Operator shall program logic sequences by graphically moving function blocks on screen and tying blocks together on screen. Application controller shall be programmed using same programming tools as building controller and as described in operator workstation section. All programming tools shall be provided and installed as part of system.
- E. Application controller shall include support for intelligent room sensor (see Section 2.10 B.) Display on room sensor shall be programmable at controller and include an operating mode and a field service mode. All button functions and display data shall be programmable to show specific controller data in each mode based on which button is pressed on the sensor. See sequence of operation for specific display requirements at intelligent room sensor.

2.4 AUXILIARY CONTROL DEVICES

- A. Temperature Sensors:
 - 1. All temperature sensors to be solid-state electronic, interchangeable with housing appropriate for application. Wall sensors to be installed as indicated on drawings. Mount 48 inches above finished floor. Duct sensors to be installed such that the sensing element is in the main air stream. Immersion sensors to be installed in wells provided by control contractor, but installed by mechanical contractor. Immersion wells shall be filled with thermal compound before installation of immersion sensors. Outside air sensors shall be installed away from exhaust or relief vents, not in an outside air intake, and in a location that is in the shade most of the day.
 - 2. The site developer should be able to program the unit to display time-of-day. Unit must have the capability to show temperatures in degrees Fahrenheit or Centigrade.
 - 3. Override time may be set in half-hour increments. Override time countdown shall be automatic, but may be reset to zero by occupant from the sensor.
- B. Space Co2 Sensors
 - 1. Space Co2 sensors shall be Veris Industries Model CWE.
- C. Current Switches
 - 1. Current Switches shall be Veris Industries Model H800.

E. Filter Status Switches

1. Filter switches shall be Cleveland Controls Model AFS-262.

2.5 ELECTRONIC ACTUATORS

- A. Quality Assurance for Actuators and Valves:
 - 1. UL Listed Standard 873 and C.S.A. Class 4813 certified.
 - 2. NEMA 2 rated enclosures for inside mounting, provide with weather shield for outside mounting.
 - 3. Five-year manufacturer's warranty. Two-year unconditional and three-year product defect from date of installation.
- B. Execution Details for Actuators:
 - 1. Each DDC analog output point shall have an actuator feedback signal, independent of control signal, the actuator feedback signal shall be wired to the DDC as an analog input for true actuator position status.
 - 2. VAV box damper actuation shall be floating type or analog (2-10VDC, 4-20mA).
 - 3. Booster-heat valve actuation shall be floating type or analog (2-10vdc, 4-20ma).
 - 4. Primary valve control shall be analog (2-10VDC, 4-20mA).
- C. Actuators for damper shall be electric unless otherwise specified, provide actuators as follows:
 - 1. UL Listed Standard 873 and Canadian Standards association Class 4813 shall certify actuators.
 - 2. NEMA 2 rated actuator enclosures for inside mounting. Use minimum NEMA 3R enclosure or weather shield to protect actuator when mounted outside.
 - 3. Five-year manufacturer's warranty. Two-year unconditional and Three year product defect from date of installation.
 - 4. Mechanical spring shall be provided when specified. Capacitors or other nonmechanical forms of fail-safe are not acceptable.
 - 5. Position indicator device shall be installed and made visible to the exposed side of the actuator. For damper short shaft mounting, a separate indicator shall be provided to the exposed side of the actuator.
 - 6. Overload Protection: Actuators shall provide protection against actuator burnout by using an internal current limiting circuit or digital motor rotation sensing circuit. Circuit shall insure that actuators cannot burn out due to stalled damper or mechanical and electrical paralleling. End switches to deactivate the actuator at the end of rotation are acceptable only for butterfly valve actuators.
 - 7. A Pushbutton gearbox release shall be provided for all non-spring actuators.
 - 8. Modulating actuators shall be 24VAC and consume 10VA power or less.
 - 9. Conduit connectors are required when specified and when code requires it.
- D. Damper Actuators:
 - 1. Outside air and exhaust air damper actuators shall be mechanical spring return. Capacitors or other non-mechanical forms of fail-safe are not acceptable. The actuator mounting arrangement and spring return feature shall permit normally open or normally closed positions of the damper as required.
 - 2. Economizer actuators shall utilize analog control 2-10VDC, floating control is not acceptable.
 - 3. Electric damper actuators (including VAV box actuators) shall be direct shaft-mounted

and use a V-bolt and toothed V-clamp causing a cold weld effect for positive gripping. Single bolt or set-screw type fasteners are not acceptable.

- 4. One electronic actuator shall be direct shaft-mounted per damper section. No connecting rods or jackshafts shall be needed. Small outside air and return air economizer dampers may be mechanically linked together if one actuator has sufficient torque to drive both and damper drive shafts are both horizontal installed.
- 5. Multi-section dampers with electric actuators shall be arranged so that each damper section operates individually. One electronic actuator shall be direct shaft-mounted per damper section.

2.6 ENCLOSURES

- A. All controllers, power supplies and relays shall be mounted in enclosures.
- B. Enclosures may be NEMA 1 when located in a clean, dry, indoor environment. Indoor enclosures shall be NEMA 12 when installed in other than a clean environment.
- C. Enclosures may be NEMA 4R when located in a outdoor environment. Out enclosures shall be NEMA 12 when installed in other than a clean environment.
- D. All enclosures shall have hinged, locking doors.
- E. Provide laminated plastic nameplates for all enclosures in any mechanical room or electrical room. Include location and unit served on nameplate. Laminated plastic shall be 0.125 inches (3 mm) thick and appropriately sized to make label easy to read.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Prior to starting work, carefully inspect installed work of other trades and verify that such work is complete to the point where work of this Section may properly commence.
 - B. Notify the owner's representative in writing of conditions detrimental to the proper and timely completion of the work.
- 3.2 PREPARATION
 - A. Clean surfaces thoroughly prior to installation.
 - B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.
 - C. Do not begin installation until substrates have been properly prepared. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding. Commencement of installation is considered acceptance of substrate conditions.

3.3 INSTALLATION (GENERAL)

- A. Install in accordance with manufacturer's instructions.
- B. Provide all miscellaneous devices, hardware, software, interconnections, installation, and programming required to ensure a complete operating system in accordance with the sequences of operation and point schedules.

3.4 LOCATION AND INSTALLATION OF COMPONENTS

- A. Locate and install components for easy accessibility; in general, mount 48 inches above floor with minimum 3 feet (1 m) of clear access space in front of units. Obtain approval on locations from owner's representative prior to installation.
- B. All instruments, including but not limited to switches and transmitters, shall be suitably wired and mounted to protect them from vibration, moisture, and high or low temperatures.
- C. Identify all equipment and panels. Provide permanently mounted tags for all panels.

D. Provide stainless steel or brass thermowells suitable for respective application and for installation under other sections, and sized to suit pipe diameter without restricting flow.

3.5 INTERLOCKING AND CONTROL WIRING

- A. Provide all interlock and control wiring. All wiring shall be installed neatly and professionally, in accordance with Specification Division 16 and all national, state and local electrical codes.
- B. Provide wiring as required by functions as specified and as recommended by equipment manufacturers, to serve specified control functions. Provide shielded low capacitance wire for all communications trunks.
- C. Control wiring shall not be installed in power circuit raceways. Magnetic starters and disconnect switches shall not be used as junction boxes. Provide auxiliary junction boxes as required. Coordinate location and arrangement of all control equipment with the owner's representative prior to rough-in.
- D. Provide auxiliary pilot duty relays on motor starters as required for control function.
- E. Provide power for all control components from nearest electrical control panel or as indicated on the electrical drawings; coordinate with electrical contractor.
- F. All control wiring in the mechanical, electrical, telephone and boiler rooms to be installed in raceways. All other wiring to be installed neatly and inconspicuously per local code requirements. If local code allows, control wiring above accessible ceiling spaces may be run with plenum-rated cable (without conduit).

3.6 DDC OBJECT TYPE SUMMARY

- A. Provide all database generation.
- B. Displays
 - 1. System displays shall show all analog and binary object types within the system. They shall be logically laid out for easy use by the owner. Provide outside air temperature indication on all system displays associated with economizer cycles.
- C. Run Time Totalization
 - 1. At a minimum, run time totalization shall be incorporated for each monitored supply fan, return fan, exhaust fan, hot water and chilled water pumps. Warning limits for each point shall be entered for alarm and or maintenance purposes.
- D. Trend log
 - 1. All binary and analog object types (including zones) shall have the capability to be automatically trended.
- E. Alarm
 - 1. All analog inputs (High/Low Limits) and selected binary input alarm points shall be prioritized and routed (locally or remotely) with alarm message per owner's requirements.

3.7 FIELD SERVICES

- A. Prepare and start logic control system under provisions of this section.
- B. Start up and commission systems. Allow sufficient time for startup and commissioning prior to placing control systems in permanent operation.
- C. Provide the capability for off-site monitoring at control contractor's local or main office. At a minimum, off-site facility shall be capable of system diagnostics and software download. Owner shall provide phone line for this service for one year or as specified.

D. Provide owner's representative with spare parts list. Identify equipment critical to maintaining the integrity of the operating system.

3.8 TRAINING

- A. Provide application engineer to instruct owner in operation of systems and equipment.
- B. Provide system operator's training to include (but not be limited to) such items as the following: modification of data displays, alarm and status descriptors, requesting data, execution of commands and request of logs. Provide on-site training above as required, up to 4 hours as part of this contract.

3.9 DEMONSTRATION

- A. Demonstrate complete operating system to owner's representative.
- B. Provide certificate stating that control system has been tested and adjusted for proper operation.
- C. Provide a complete and operational temperature control and building automation system based on the following points and sequence of operation. The system shall be complete as to sequences and standard control practices. The determined point list is the minimum amount of points that are to be provided. If additional points are required to meet the sequence of operation, they will be provided.
- D. BACnet Object List:
 - 1. The following points as defined for each piece of equipment are designated as follows:
 - a. Binary Out (BO): Defined as any two-state output (start/stop) (enable/disable), or other.
 - b. Binary In (BI): Defined as any two-state input (alarm, status), or other.
 - c. Analog In (AI): Defined as any variable input (temperature) (position), or other.
 - d. Analog Out (AO): Defined as any electrical variable output. 0-20mA, 4-20mA and 0-10VDC are the only acceptable analog outputs. The driver for analog outputs must come from both hardware and software resident in the controllers. Transducers will not be acceptable under any circumstance.
 - e. Analog Value (AV): Hardware points, software points, graphed as standard with manufacturer.
 - 1) Hardware Points: AI, AO, BI, BO.
 - 2) Software Points: AV, BV, Sched, Trend, Alarm.
 - 3) Show on graphic.

SECTION 15910 HVAC VARIABLE FREQUENCY DRIVES

PART 1 - GENERAL

1.01 DESCRIPTION

- A. This specification is to cover a complete Variable Frequency Drive (VFD aka: VSD, AFD, ASD, Inverter, AC Drive, et al) consisting of a pulse width modulated (PWM) inverter designed for use with a standard NEMA Design B induction motor.
- B. The drive manufacturer shall supply the drive and all necessary options as herein specified. The manufacturer shall have been engaged in the production of this type of equipment for a minimum of twenty years. VFDs that are manufactured by a third party and "brand labeled" shall not be acceptable. Drive manufacturers who do not build their own power boards and assemblies, or do not have full control of the power board manufacturing and quality control, shall be considered as a "brand labeled" drive. All VFDs installed on this project shall be from the same manufacturer.

1.02 QUALITY ASSURANCE

- A. Referenced Standards and Guidelines:
 - 1. Institute of Electrical and Electronic Engineers (IEEE)
 - a. IEEE 519-1992, Guide for Harmonic Content and Control.
 - 2. Underwriters Laboratories (as appropriate)
 - a. UL508
 - b. UL508A
 - c. UL508C
 - 3. National Electrical Manufacturer's Association (NEMA)
 - a. ICS 7.0, AC Adjustable Speed Drives
 - 4. International Electrotechnical Commission (IEC)
 - a. EN/IEC 61800-3
 - 5. National Electric Code (NEC)
 - a. NEC 430.120, Adjustable-Speed Drive Systems
 - 6. International Building Code (IBC)
 - a. IBC 2012 Seismic referencing ASC 7-05 and ICC AC-156
- B. Qualifications:
 - 1. VFDs and options shall be UL508 listed as a complete assembly. The base VFD shall be UL listed for 100 kA SCCR without the need for external input fuses.
 - 2. CE Mark The base VFD shall conform to the European Union Electromagnetic Compatibility directive, a requirement for CE marking. The VFD shall meet product standard EN 61800-3 for the First Environment restricted level (Category C2). Base drives that only meet the Second Environment (Category C3, C4) shall be supplied with filters to bring the drive in compliance with the First Environment levels.
 - 3. The entire VFD assembly shall be seismically certified and labeled as such in accordance with the 2012 International Building Code (IBC):

- a. VFD manufacturer shall provide Seismic Certification and Installation requirements at time of submittal.
- b. Seismic importance factor of 1.5 rating is required, and shall be based upon actual shake test data as defined by ICC AC-156.
- c. Seismic ratings based upon calculations alone are not acceptable. Certification of Seismic rating must be based on testing done in all three axis of motion.
- d. Special seismic certification of equipment and components shall be provided by OSHPD preapproval.
- 4. Acceptable Manufacturers
 - a. ABB ACH Series.
 - b. Alternate manufacturer's requests must be submitted in writing to the Engineer for approval at least 20 working days prior to bid. Approval does not relieve the supplier of specification requirements.
- 5. Factory authorized start up and District training should be provided locally upon request.

1.03 SUBMITTALS

- A. Submittals shall include the following information:
 - 1. Outline dimensions, conduit entry locations and weight.
 - 2. Customer connection and power wiring diagrams.
 - 3. Complete technical product description include a complete list of options provided. Any portions of this specification not met must be clearly indicated or the supplier and contractor shall be liable to provide all additional components required to meet this specification.

1.04 BUILDING INFORMATION MODELING (BIM)

- A. BIM objects shall contain IFC parameters and associated data applicable to building system requirements. These elements shall support the analytic process including size, clearance, location, mounting heights, and system information where applicable.
- B. VFD BIM models shall contain as a minimum the following attributes:
 - 1. Input voltage
 - 2. Current rating
 - 3. Model number
 - 4. Manufacturer
 - 5. Enclosure type

PART 2 - PRODUCTS

- 2.01 VARIABLE FREQUENCY DRIVES
 - A. Manufacturer: ABB, Inc.
 - B. The VFD package as specified herein shall be enclosed in a UL Type enclosure (enclosures with only NEMA ratings are not acceptable), completely assembled and tested by the manufacturer in an ISO9001 facility.
 - C. The VFD shall provide full rated output from a line of $\pm 10\%$ of nominal voltage. The VFD shall continue to operate without faulting from a line of $\pm 30\%$ to $\pm 35\%$ of nominal voltage.

- 1. VFDs shall be capable of continuous full load operation under the following environmental operating conditions:
 - a. -15 to 40° C (5 to 104° F) ambient temperature. Operation to 50° C shall be allowed with a 10% reduction from VFD full load current.
 - b. Altitude 0 to 3300 feet above sea level. Operation to 6600 shall be allowed with a 10% reduction from VFD full load current.
 - c. Humidity less than 95%, non-condensing.
- D. All VFDs shall have the following standard features:
 - 1. All circuit boards shall be coated to protect against corrosion.
 - All VFDs shall have the same customer interface, including digital display, and keypad, regardless of horsepower rating. The keypad shall be removable, capable of remote mounting and allow for uploading and downloading of parameter settings as an aid for start-up of multiple VFDs.
 - 3. The keypad shall include Hand-Off-Auto selections and manual speed control. The drive shall incorporate "bumpless transfer" of speed reference when switching between "Hand" and "Auto" modes. There shall be fault reset and "Help" buttons on the keypad. The Help button shall include "on-line" assistance for programming and troubleshooting.
 - 4. There shall be a built-in time clock in the VFD keypad. The clock shall have a battery backup with 10 years minimum life span. The clock shall be used to date and time stamp faults and record operating parameters at the time of fault. VFD programming shall be held in non-volatile memory and is not dependent on battery power
 - 5. The VFD's shall utilize pre-programmed application macros specifically designed to facilitate start-up. The Application Macros shall provide one command to reprogram all parameters and customer interfaces for a particular application to reduce programming time. The VFD shall have two user macros to allow the end-user to create and save custom settings.
 - 6. The VFD shall have cooling fans that are designed for easy replacement. The fans shall be designed for replacement without requiring removing the VFD from the wall or removal of circuit boards. The VFD cooling fans shall operate only when required, based on the temperature of and run command to the drive. VFD protection shall be based on thermal sensing and not cooling fan operation.
 - 7. The VFD shall be capable of starting into a coasting load (forward or reverse) up to full speed and accelerate or decelerate to set point without tripping or component damage (flying start).
 - 8. The VFD shall have the ability to automatically restart after an over-current, overvoltage, under-voltage, or loss of input signal protective trip. The number of restart attempts, trial time, and time between attempts shall be programmable.
 - 9. The overload rating of the drive shall be 110% of its normal duty current rating for 1 minute every 10 minutes, 130% overload for 2 seconds every minute. The minimum FLA rating shall meet or exceed the values in the NEC/UL table 430.250 for 4-pole motors.
 - 10. VFDs through 200 HP shall have internal swinging (non-linear) chokes providing impedance equivalent to 5% to reduce the harmonics to the power line. Swinging choke shall be required resulting in superior partial load harmonic reduction. Linear chokes are not acceptable. 5% impedance may be from dual (positive and negative DC bus) chokes, or 5% swinging AC line chokes. VFD's with only one DC choke shall add an AC line choke.
 - 11. The input current rating of the VFD shall not be greater than the output current rating. VFD's with higher input current ratings require the upstream wiring, protection devices, and source transformers to be oversized per NEC 430.122. Input and output current ratings must be shown on the VFD nameplate.
 - 12. The VFD shall include a coordinated AC transient surge protection system consisting of 4 MOVs (phase to phase and phase to ground), a capacitor clamp, 1600 PIV Diode

Bridge and internal chokes. The MOV's shall have a minimum 125 joule rating per phase across the diode bridge. VFDs that do not include coordinated AC transient surge protection shall include an external TVSS (Transient Voltage Surge Suppressor).

- 13. The VFD shall provide a programmable loss-of-load (broken belt / broken coupling) Form-C relay output. The drive shall be programmable to signal the loss-of-load condition via a keypad warning, Form-C relay output, and / or over the serial communications bus. The loss-of-load condition sensing algorithm shall include a programmable time delay that will allow for motor acceleration from zero speed without signaling a false loss-of-load condition.
- 14. The VFD shall include multiple "two zone" PID algorithms that allow the VFD to maintain PID control from two separate feedback signals (4-20mA, 0-10V, and / or serial communications). The two zone control PID algorithm will control motor speed based on a minimum, maximum, or average of the two feedback signals. All of the VFD PID controllers shall include the ability for "two zone" control.
- 15. If the input reference is lost, the VFD shall give the user the option of either (1) stopping and displaying a fault, (2) running at a programmable preset speed, (3) hold the VFD speed based on the last good reference received, or (4) cause a warning to be issued, as selected by the user. The drive shall be programmable to signal this condition via a keypad warning, Form-C relay output and / or over the serial communication bus.
- 16. The VFD shall have programmable "Sleep" and "Wake up" functions to allow the drive to be started and stopped from the level of a process feedback signal.
- E. All VFDs to have the following adjustments:
 - 1. Three (3) programmable critical frequency lockout ranges to prevent the VFD from operating the load continuously at an unstable speed. The lockout range must be fully adjustable, from 0 to full speed.
 - 2. Two (2) PID Set point controllers shall be standard in the drive, allowing pressure or flow signals to be connected to the VFD, using the microprocessor in the VFD for the closed-loop control. The VFD shall have 250 ma of 24 VDC auxiliary power and be capable of loop powering a transmitter supplied by others. The PID set point shall be adjustable from the VFD keypad, analog inputs, or over the communications bus. There shall be two independent parameter sets for the PID controller and the capability to switch between the parameter sets via a digital input, serial communications or from the keypad. The independent parameter sets are typically used for night setback, switching between summer and winter set points, etc.
 - 3. There shall be an independent, second PID loop that can utilize the second analog input and modulate one of the analog outputs to maintain the set point of an independent process (i.e. valves, dampers, etc.). All set points, process variables, etc. to be accessible from the serial communication network.
 - 4. Two (2) programmable analog inputs shall accept current or voltage signals.
 - 5. Two (2) programmable analog outputs (0-20ma or 4-20 ma). The outputs may be programmed to output proportional to Frequency, Motor Speed, Output Voltage, Output Current, Motor Torque, Motor Power (kW), DC Bus voltage, Active Reference, Active Feedback, and other data.
 - 6. Six (6) programmable digital inputs for maximum flexibility in interfacing with external devices. All digital inputs shall be programmable to initiate upon an application or removal of 24VDC.
 - 7. Three (3) programmable, digital Form-C relay outputs. The relay outputs shall include programmable on and off delay times and adjustable hysteresis. The relays shall be rated for maximum switching current 8 amps at 24 VDC and 0.4 A at 250 VAC; Maximum voltage 300 VDC and 250 VAC; continuous current rating of 2 amps RMS. Outputs shall be true Form-C type contacts; open collector outputs are not acceptable. Drives that have only two (2) relay outputs must provide an option card that provides additional relay outputs.

- 8. Run permissive circuit There shall be a run permissive circuit for damper or valve control. Regardless of the source of a run command (keypad, input contact closure, time-clock control, or serial communications), the VFD shall provide a dry contact closure that will signal the damper to open (VFD motor does not operate). When the damper is fully open, a normally open dry contact (end-switch) shall close. The closed end-switch is wired to a VFD digital input and allows VFD motor operation. Two separate safety interlock inputs shall be provided. When either safety is opened, the motor shall be commanded to coast to stop and the damper shall be commanded to close. The keypad shall display "start enable 1 (or 2) missing". The safety input status shall also be transmitted over the serial communications bus.
- 9. The VFD control shall include a programmable time delay for VFD start and a keypad indication that this time delay is active. A Form C relay output provides a contact closure to signal the VAV boxes open. This will allow VAV boxes to be driven open before the motor operates. The time delay shall be field programmable from 0 − 120 seconds. Start delay shall be active regardless of the start command source (keypad command, input contact closure, time-clock control, or serial communications).
- 10. Seven (7) programmable preset speeds.
- 11. Two independently adjustable accel and decel ramps with 1 1800 seconds adjustable time ramps.
- 12. The VFD shall include a motor flux optimization circuit that will automatically reduce applied motor voltage to the motor to optimize energy consumption and reduce audible motor noise. The VFD shall have selectable software for optimization of motor noise, energy consumption, and motor speed control.
- 13. The VFD shall include a carrier frequency control circuit that reduces the carrier frequency based on actual VFD temperature that allows higher carrier frequency settings without derating the VFD.
- 14. The VFD shall include password protection against parameter changes.
- F. The Keypad shall include a backlit LCD display. The display shall be in complete English words for programming and fault diagnostics (alpha-numeric codes are not acceptable). All VFD faults shall be displayed in English words. The keypad shall include a minimum of 14 assistants including:
 - 1. Start-up assistant
 - 2. Parameter assistants
 - a. PID assistant
 - b. Reference assistant
 - c. I/O assistant
 - d. Serial communications assistant
 - e. Option module assistant
 - f. Panel display assistant
 - g. Low noise set-up assistant
 - 3. Maintenance assistant
 - 4. Troubleshooting assistant
 - 5. Drive optimizer assistants
- G. All applicable operating values shall be capable of being displayed in engineering (user) units. A minimum of three operating values from the list below shall be capable of being displayed at all times. The display shall be in complete English words (alpha-numeric codes are not acceptable):
 - 1. Output Frequency
 - 2. Motor Speed (RPM, %, or Engineering units)
 - 3. Motor Current

- 4. Motor Torque
- 5. Motor Power (kW)
- 6. DC Bus Voltage
- 7. Output Voltage
- H. The VFD shall include a fireman's override input. Upon receipt of a contact closure from the fire / smoke control station, the VFD shall operate in one of two modes: 1) Operate at a programmed predetermined fixed speed ranging from -500Hz (reverse) to 500Hz (forward).
 2) Operate in a specific fireman's override PID algorithm that automatically adjusts motor speed based on override set point and feedback. The mode shall override all other inputs (analog/digital, serial communication, and all keypad commands), except customer defined safety run interlocks, and force the motor to run in one of the two modes above. "Override Mode" shall be displayed on the keypad. Upon removal of the override signal, the VFD shall resume normal operation, without the need to cycle the normal digital input run command.
- I. Serial Communications
 - The VFD shall have an EIA-485 port as standard. The standard protocols shall be Modbus, Johnson Controls N2, Siemens Building Technologies FLN, and BACnet. [Optional protocols for LonWorks, Profibus, EtherNet, BACnet IP, and DeviceNet shall be available.] Each individual drive shall have the protocol in the base VFD. The use of third party gateways and multiplexers is not acceptable. All protocols shall be "certified" by the governing authority (i.e. BTL Listing for BACnet). Use of non-certified protocols is not allowed.
 - 2. The BACnet connection shall be an EIA-485, MS/TP interface operating at 9.6, 19.2, 38.4, or 76.8 Kbps. The connection shall be tested by the BACnet Testing Labs (BTL) and be BTL Listed. The BACnet interface shall conform to the BACnet standard device type of an Applications Specific Controller (B-ASC). The interface shall support all BIBBs defined by the BACnet standard profile for a B-ASC including, but not limited to:
 - a. Data Sharing Read Property B.
 - b. Data Sharing Write Property B.
 - c. Device Management Dynamic Device Binding (Who-Is; I-Am).
 - d. Device Management Dynamic Object Binding (Who-Has; I-Have).
 - e. Device Management Communication Control B.
 - 3. Serial communication capabilities shall include, but not be limited to; run-stop controls, speed set adjustment, and lock and unlock the keypad. The drive shall have the capability of allowing the BAS to monitor feedback such as process variable feedback, output speed / frequency, current (in amps), % torque, power (kW), kilowatt hours (resettable), operating hours (resettable), and drive temperature. The BAS shall also be capable of monitoring the VFD relay output status, digital input status, and all analog input and analog output values. All diagnostic warning and fault information shall be transmitted over the serial communications bus. Remote VFD fault reset shall be possible.
 - 4. The VFD shall allow the BAS to control the drive digital and analog outputs via the serial interface. This control shall be independent of any VFD function. The analog outputs may be used for modulating chilled water valves or cooling tower bypass valves. The drive digital (Form-C relay) outputs may be used to actuate a damper, open a valve or control any other device that requires a maintained contact for operation. In addition, all of the drive digital inputs shall be capable of being monitored by the BAS system. This allows for remote monitoring of which (of up to 4) safeties are open.
 - 5. The VFD shall include an independent PID loop for customer use. The independent PID loop may be used for cooling tower bypass value control, chilled water value / hot water valve control, etc. Both the VFD PID control loop and the independent PID control loop shall continue functioning even if the serial communications connection is

lost. As default, the VFD shall keep the last good set point command and last good DO & AO commands in memory in the event the serial communications connection is lost and continue controlling the process.

- J. EMI / RFI filters. All VFD's shall include EMI/RFI filters. The onboard filters shall allow the VFD assembly to be CE Marked and the VFD shall meet product standard EN 61800-3 for the First Environment restricted level (Category C2) with up to 100 feet of motor cable. Second environment (Category C3, C4) is not acceptable, no Exceptions. Certified test reports shall be provided with the submittals confirming compliance to EN 61800-3, First Environment (C2).
- K. DRIVE OPTIONS Options shall be furnished and mounted by the drive manufacturer. All optional features shall be UL Listed by the drive manufacturer as a complete assembly and carry a UL508 label.
 - 1. Circuit Breaker Door interlocked padlockable circuit breaker that will disconnect all input power from the drive and all internally mounted options. Circuit breaker option shall be available with or without systems requiring bypass.
 - 2. Disconnect Switch with Fuses Door interlocked, padlockable disconnect switch that will disconnect all input power from the drive and all internally mounted options. Drive input fusing is included.
 - 3. Fieldbus adapters The following optional fieldbus adapters shall be available as a plug in modules.
 - a. Ethernet IP: ControlNet over Ethernet & ModBus TCP
 - b. BACnet IP

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Examine areas, surfaces, and substrates to receive VFDs for compliance with requirements, installation tolerances and other conditions affecting performance.
- B. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFD installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 APPLICATION

- A. Select features of each VFD to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; and duty cycle of motor, controller, and load.
- B. Select horsepower rating of controllers to suit motor controlled.

3.03 INSTALLATION

A. Install the drive in accordance with the recommendations of the VFD manufacturer as outlined in the VFD installation manual.

- B. Complete power wiring in compliance with NEC code 430.122 wiring requirements based on the VFD input current. The contractor shall complete all wiring in accordance with the recommendations of the VFD manufacturer as outlined in the installation manual.
- C. Anchor each VFD assembly to steel-channel sills arranged and sized according to manufacturer's written instructions. Attach by bolting. Level and grout sills flush with mounting surface.

3.04 IDENTIFICATION

A. Identify VFDs, components, and control wiring according to Division 16 Section "Electrical Identification".

3.05 CONTROL WIRING INSTALLATION

- A. Install wiring between VFDs and remote devices according to Division 16 Section "Conductors and Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect hand-off-automatic switch and other automatic-control devices where applicable.
 - 1. Connect selector switches to bypass only manual- and automatic-control devices that have no safety functions when switch is in hand position.
 - 2. Connect selector switches with control circuit in both hand and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.06 CONNECTIONS

- A. Conduit installation requirements are specified in other Division 16 Sections. Drawings indicate general arrangement of conduit, fittings, and specialties.
- B. Ground equipment according to Division 16 Section "Grounding and Bonding."

3.07 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - 1. Test insulation resistance for each enclosed controller element, bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to perform the following:
 - 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
 - 2. Assist in field testing of equipment including pretesting and adjusting of solid-state controllers.
 - 3. Report results in writing.

- C. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:
 - 1. Perform each electrical test and visual and mechanical inspection, except optional tests, stated in NETA ATS. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.08 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.09 DEMONSTRATION

A. Engage a factory-authorized service representative to train District's maintenance personnel to adjust, operate, and maintain variable frequency controllers.

END OF SECTION

SECTION 15950 TESTING, ADJUSTING, AND BALANCING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
 - c. Induction-unit systems.
 - 2. Balancing Hydronic Piping Systems:
 - a. Constant-flow hydronic systems.
 - b. Variable-flow hydronic systems.
 - c. Primary-secondary hydronic systems.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 SUBMITTALS

- A. Qualification Data: Within 15 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 15 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3.
- C. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article.

- D. Certified TAB reports.
- E. Sample report forms.
- F. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.

1.5 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by NEBB or TABB.
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by NEBB or TABB.
 - 2. TAB Technician: Employee of the TAB contractor and who is certified by NEBB or TABB as a TAB technician.
- B. TAB Conference: Meet with Construction Manager or Commissioning Authority on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven days' advance notice of scheduled meeting time and location.
 - 1. Agenda Items:
 - a. The Contract Documents examination report.
 - b. The TAB plan.
 - c. Coordination and cooperation of trades and subcontractors.
 - d. Coordination of documentation and communication flow.
- C. Certify TAB field data reports and perform the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- D. TAB Report Forms: Use standard TAB contractor's forms approved by Construction Manager or Commissioning Authority.
- E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

1.6 PROJECT CONDITIONS

A. Full District Occupancy: District will occupy the site and existing building during entire TAB period. Cooperate with District during TAB operations to minimize conflicts with District's operations.

1.7 COORDINATION

- A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 TAB SPECIALISTS

A. Subject to compliance with requirements, TAB contractors shall have at least 5 years experienced of testing, adjusting and balancing HVAC system, both air and water systems, constant and variable volume system.

3.2 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Division 15 Section "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.

- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.3 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in SMACNA's "HVAC Systems Testing, Adjusting, and Balancing" and in this Section.
 - 1. Comply with requirements in ASHRAE 62.1-2004, Section 7.2.2, "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Division 15 Section "Duct Accessories."

- 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 15 Section "HVAC Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaustair dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Division 15 Section "Metal Ducts."

3.6 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.

- c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
- d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
- 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
- 4. Measure static pressures entering and leaving other devices, such as sound traps, heatrecovery equipment, and air washers, under final balanced conditions.
- 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 6. Obtain approval from Construction Manager or Commissioning Authority for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 15 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fanmotor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.7 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum-airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
- B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.
 - 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
 - 3. Measure total system airflow. Adjust to within indicated airflow.
 - 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 - 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 - a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
 - 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
 - 7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
 - 8. Record final fan-performance data.
- C. Pressure-Dependent, Variable-Air-Volume Systems without Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Balance variable-air-volume systems the same as described for constant-volume air systems.
 - 2. Set terminal units and supply fan at full-airflow condition.
 - 3. Adjust inlet dampers of each terminal unit to indicated airflow and verify operation of the static-pressure controller. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 - 4. Readjust fan airflow for final maximum readings.
 - 5. Measure operating static pressure at the sensor that controls the supply fan if one is installed, and verify operation of the static-pressure controller.
 - 6. Set supply fan at minimum airflow if minimum airflow is indicated. Measure static pressure to verify that it is being maintained by the controller.
 - 7. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.

- a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.
- 8. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
- D. Pressure-Dependent, Variable-Air-Volume Systems with Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set system at maximum indicated airflow by setting the required number of terminal units at minimum airflow. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
 - 2. Adjust supply fan to maximum indicated airflow with the variable-airflow controller set at maximum airflow.
 - 3. Set terminal units at full-airflow condition.
 - 4. Adjust terminal units starting at the supply-fan end of the system and continuing progressively to the end of the system. Adjust inlet dampers of each terminal unit to indicated airflow. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 - 5. Adjust terminal units for minimum airflow.
 - 6. Measure static pressure at the sensor.
 - 7. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

3.8 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check liquid level in expansion tank.
 - 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 6. Set system controls so automatic valves are wide open to heat exchangers.
 - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.9 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:
 - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Construction Manager or Commissioning Authority and comply with requirements in Division 15 Section "Hydronic Pumps."
 - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 - a. Monitor motor performance during procedures and do not operate motors in overload conditions.
 - 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
 - 4. Report flow rates that are not within plus or minus 10 percent of design.
- B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.
- C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.
- D. Set calibrated balancing valves, if installed, at calculated presettings.
- E. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
- F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 - 3. Record settings and mark balancing devices.
- H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.
- J. Check settings and operation of each safety valve. Record settings.

3.10 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.11 PROCEDURES FOR PRIMARY-SECONDARY HYDRONIC SYSTEMS

A. Balance the primary circuit flow first and then balance the secondary circuits.

3.12 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.13 PROCEDURES FOR CHILLERS

- A. Balance water flow through each evaporator and condenser to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:
 - 1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
 - 2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow.
 - 3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
 - 4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
 - 5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
 - 6. Capacity: Calculate in tons of cooling.
 - 7. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.14 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.

C. Record compressor data.

3.15 PROCEDURES FOR BOILERS

A. Hydronic Boilers: Measure and record entering- and leaving-water temperatures and water flow.

3.16 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

- A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 - 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 - 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 - 3. Check the refrigerant charge.
 - 4. Check the condition of filters.
 - 5. Check the condition of coils.
 - 6. Check the operation of the drain pan and condensate-drain trap.
 - 7. Check bearings and other lubricated parts for proper lubrication.
 - 8. Report on the operating condition of the equipment and the results of the measurements taken. Report deficiencies.
- B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
 - 1. New filters are installed.
 - 2. Coils are clean and fins combed.
 - 3. Drain pans are clean.
 - 4. Fans are clean.
 - 5. Bearings and other parts are properly lubricated.
 - 6. Deficiencies noted in the preconstruction report are corrected.
- C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 - 1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
 - 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
 - 3. If calculations increase or decrease the air flow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
 - 4. Balance each air outlet.

3.17 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 5 percent.
 - 2. Air Outlets and Inlets: Plus or minus 5 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 5 percent.

4. Cooling-Water Flow Rate: Plus or minus 5 percent.

3.18 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.19 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.

- 12. Nomenclature sheets for each item of equipment.
- 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
- 14. Notes to explain why certain final data in the body of reports vary from indicated values.
- 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.
- E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - j. Number, make, and size of belts.
 - k. Number, type, and size of filters.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total air flow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.

- e. Filter static-pressure differential in inches wg.
- f. Preheat-coil static-pressure differential in inches wg.
- g. Cooling-coil static-pressure differential in inches wg.
- h. Heating-coil static-pressure differential in inches wg.
- i. Outdoor airflow in cfm .
- j. Return airflow in cfm .
- k. Outdoor-air damper position.
- I. Return-air damper position.
- m. Vortex damper position.
- F. Apparatus-Coil Test Reports:
 - 1. Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch o.c.
 - f. Make and model number.
 - g. Face area in sq. ft. .
 - h. Tube size in NPS .
 - i. Tube and fin materials.
 - j. Circuiting arrangement.
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm .
 - b. Average face velocity in fpm .
 - c. Air pressure drop in inches wg.
 - d. Outdoor-air, wet- and dry-bulb temperatures in deg F .
 - e. Return-air, wet- and dry-bulb temperatures in deg F .
 - f. Entering-air, wet- and dry-bulb temperatures in deg F .
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F .
 - h. Water flow rate in gpm .
 - i. Water pressure differential in feet of head or psig.
 - j. Entering-water temperature in deg F.
 - k. Leaving-water temperature in deg F.
 - I. Refrigerant expansion valve and refrigerant types.
 - m. Refrigerant suction pressure in psig.
 - n. Refrigerant suction temperature in deg F .
- G. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Fuel type in input data.
 - g. Output capacity in Btu/h .
 - h. Ignition type.
 - i. Burner-control types.

- j. Motor horsepower and rpm.
- k. Motor volts, phase, and hertz.
- I. Motor full-load amperage and service factor.
- m. Sheave make, size in inches , and bore.
- n. Center-to-center dimensions of sheave, and amount of adjustments in inches .
- 2. Test Data (Indicated and Actual Values):
 - a. Total air flow rate in cfm .
 - b. Entering-air temperature in deg F.
 - c. Leaving-air temperature in deg F.
 - d. Air temperature differential in deg F .
 - e. Entering-air static pressure in inches wg.
 - f. Leaving-air static pressure in inches wg.
 - g. Air static-pressure differential in inches wg.
 - h. Low-fire fuel input in Btu/h .
 - i. High-fire fuel input in Btu/h .
 - j. Manifold pressure in psig .
 - k. High-temperature-limit setting in deg F.
 - I. Operating set point in Btu/h.
 - m. Motor voltage at each connection.
 - n. Motor amperage for each phase.
 - o. Heating value of fuel in Btu/h .
- H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Coil identification.
 - d. Capacity in Btu/h .
 - e. Number of stages.
 - f. Connected volts, phase, and hertz.
 - g. Rated amperage.
 - h. Air flow rate in cfm .
 - i. Face area in sq. ft. .
 - j. Minimum face velocity in fpm .
 - 2. Test Data (Indicated and Actual Values):
 - a. Heat output in Btu/h.
 - b. Air flow rate in cfm .
 - c. Air velocity in fpm .
 - d. Entering-air temperature in deg F .
 - e. Leaving-air temperature in deg F.
 - f. Voltage at each connection.
 - g. Amperage for each phase.
- I. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.

- c. Make and type.
- d. Model number and size.
- e. Manufacturer's serial number.
- f. Arrangement and class.
- g. Sheave make, size in inches , and bore.
- h. Center-to-center dimensions of sheave, and amount of adjustments in inches .
- 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches , and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches .
 - g. Number, make, and size of belts.
- 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm .
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F .
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches .
 - f. Duct area in sq. ft. .
 - g. Indicated air flow rate in cfm .
 - h. Indicated velocity in fpm .
 - i. Actual air flow rate in cfm .
 - j. Actual average velocity in fpm .
 - k. Barometric pressure in psig.
- K. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Apparatus used for test.
 - d. Area served.
 - e. Make.
 - f. Number from system diagram.
 - g. Type and model number.
 - h. Size.
 - i. Effective area in sq. ft. .

- 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm.
 - b. Air velocity in fpm .
 - c. Preliminary air flow rate as needed in cfm .
 - d. Preliminary velocity as needed in fpm .
 - e. Final air flow rate in cfm .
 - f. Final velocity in fpm .
 - g. Space temperature in deg F .
- L. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling-unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm .
 - b. Entering-water temperature in deg F .
 - c. Leaving-water temperature in deg F .
 - d. Water pressure drop in feet of head or psig .
 - e. Entering-air temperature in deg F .
 - f. Leaving-air temperature in deg F .
- M. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Service.
 - d. Make and size.
 - e. Model number and serial number.
 - f. Water flow rate in gpm .
 - g. Water pressure differential in feet of head or psig .
 - h. Required net positive suction head in feet of head or psig.
 - i. Pump rpm.
 - j. Impeller diameter in inches .
 - k. Motor make and frame size.
 - I. Motor horsepower and rpm.
 - m. Voltage at each connection.
 - n. Amperage for each phase.
 - o. Full-load amperage and service factor.
 - p. Seal type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Static head in feet of head or psig.
 - b. Pump shutoff pressure in feet of head or psig.
 - c. Actual impeller size in inches .

- d. Full-open flow rate in gpm .
- e. Full-open pressure in feet of head or psig .
- f. Final discharge pressure in feet of head or psig.
- g. Final suction pressure in feet of head or psig.
- h. Final total pressure in feet of head or psig.
- i. Final water flow rate in gpm .
- j. Voltage at each connection.
- k. Amperage for each phase.
- N. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.20 INSPECTIONS

- A. Initial Inspection:
 - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
 - 2. Check the following for each system:
 - a. Measure airflow of at least 100 percent of air outlets.
 - b. Measure water flow of at least 100 percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Verify that balancing devices are marked with final balance position.
 - e. Note deviations from the Contract Documents in the final report.
- B. Final Inspection:
 - 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Construction Manager or Commissioning Authority.
 - 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Construction Manager or Commissioning Authority.
 - 3. Construction Manager or Commissioning Authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
 - 4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
 - 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

- C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:
 - 1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, District may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.
- D. Prepare test and inspection reports.

3.21 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

SECTION 16010 ELECTRICAL GENERAL REQUIREMENTS

PART 1 - GENERAL

1.01 SCOPE

Electrical General Requirements specifically applicable to Division 16 Sections, in addition to Division 1 - General Requirements. Work includes but is not necessarily limited to the following:

- A. Definitions, guarantees, submittals, clean-up, "As-Builts" and all other applicable requirements of Division 0 and Division 1 apply to the work of this section.
- B. Examine all other sections for work related to those sections which are required to be provided as work under this Division & Sections.
- C. Coordinate all work in this Division with related trades.
- D. Furnish and install the following:
 - 1. Incidental items not indicated on the drawings nor mentioned in the Specifications that belong to the work described, or are required to provide complete operable systems, as though called out here in every detail.
 - 2. All construction power and lighting and all power for testing of equipment and systems through final acceptance tests.
 - 3. All equipment and facilities required to provide temporary and permanent services.
 - 4. Electrical distribution systems, including, feeders, pull boxes, panel boards, branch circuit wiring, and circuit control and disconnect devices.
 - 5. All electrical work for the "Replacement and Repair of Heat Vent Systems", except as referred to be furnished or installed as part of other sections/divisions of the specifications.
 - 6. All distribution material for and connection of the mechanical equipment, as required by the specific equipment furnished so that a complete and operable system results.
 - 7. Conduits, outlets and cabinets or terminal boards. Furnish and install the following:
 - a. All conduits, outlets, line voltage wiring, and control devices required for the specified operation of the equipment.
 - 8. Furnishing and installation of all hangers, anchors, sleeves, chases and supports, for all electrical materials and equipment.
 - 9. Connect all motors and electrical line voltage control equipment.
 - 10. Core drilling, Cleaning, patching, repairing and painting.

1.02 APPLICABLE PUBLICATIONS AND STANDARDS

The following publications form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

- A. American National Standards Institute, Inc. (ANSI) Publications
- B. State of California Administrative Codes
- C. National Electrical Manufacturers Association (NEMA) Publication
- D. National Fire Protection Association (NFPA) Publications
- E. Underwriters Laboratories, Inc. (UL) Publications.
- F. All current codes and regulations enforced by Division of State Architects. (DSA)

1.03 REFERENCES

A. All work and materials shall conform to all applicable Federal, State and local codes and regulations governing the installation.

LIST OF CALIFORNIA CODE OF REGULATIONS (C.C.R.) Applicable Codes as Of January 1, 2014

Title 19 C.C.R.,	Public Safety, State Fire Marshal Regulations.			
Title 24 C.C.R., Part1	2013 California Building Standards Administrative Code.			
Title 24 C.C.R., Part2	2013 California Building Code (CBC)			
	(2012 International Building Code of the International Code Council, With			
	California Amendments)			
Title 24 C.C.R., Part3	2013 California Electrical Code (CEC)			
The 24 C.C.N., Faits				
	(2012 National Electrical Code of the National Fire Protection Association, NFPA)			
Title 24 C.C.R., Part4	2013 California Mechanical Code (CMC)			
	(2012 Uniform Mechanical Code of the International Association of Plumbing and			
	Mechanical Officials, IAPMO)			
Title 24 C.C.R., Part5	2013 California Plumbing Code (CPC)			
	(2012 Uniform Plumbing Code of the International Association of Plumbing and			
	Mechanical Officials, IAPMO)			
Title 24 C.C.R., Part6	2013 California Energy Code			
	67 67			
Title 24 C.C.R., Part7	2013 Safety Code for Elevators and Escalators (ASME A17.1-2004)			
Title 24 C.C.R., Part8	2013 California Historical Building Code			
Title 24 C.C.R., Part9	2013 California Fire Code (CFC)			
	(2012 International Fire Code of the International Code Council)			
Title 24 C.C.R., Part10	2013 California Existing Building Code			
	(2012 International Existing Building Code of the International Code Council, With			
	Amendments)			
Title 24 C C R Part11	2013 California Green Building Standards Code (CALGREEN Code)			
	2013 California Referenced Standards Code			
2007 ASME A17.L(W/A17.LA/CSA B44a-08 Addenda) Safety Code For Elevators And Escalators				
2001 ADMIL ATT. LAVIATT. LAVOA DAAR AUGINAJ DAIELY OUGET UI LIEVALUIS AILU ESUAIALUIS				

PARTIAL LIST OF APPLICABLE STANDARDS

2013 California Building Code (For SFM) Referenced Standards Chapter 35

NFPA 13 NFPA 14 NFPA 17 NFPA 20 NFPA 22 NFPA 24 NFPA 72 NFPA 80 NFPA 92 NFPA 253 NFPA 2001	Installation of Sprinkler Systems Standpipe Systems Dry Chemical Extinguishing Systems Wet Chemical Systems Stationary Pumps Water Tanks Of Private Fire Protection Private Fire Mains National Fire Alarm Code Fire Doors and Other Opening Protectives Standard for Smoke Control Systems Critical Radiant Flux of Floor Covering Systems Clean Agent Fire Extinguishing Systems	2013 Edition 2013 Edition 2013 Edition 2013 Edition 2013 Edition 2013 Edition 2013 Edition 2013 Edition 2013 Edition 2012 Edition 2006 Edition 2012 Edition
NFPA 2001 ICC 300	Clean Agent Fire Extinguishing Systems Bleachers, Folding and Telescopic Seating, and Grand Stands	2012 Edition 2012 Edition

- 1.04 WORK SEQUENCE
 - A. Install work in phases to accommodate District's occupancy requirements. During the construction period, coordinate electrical and mechanical schedule and operations with District's and other trades. Refer to Division 1 General Requirements.

1.05 DEFINITIONS

- A. The words "work" or "electrical work" herein include products, labor, equipment, tools, appliances, transportation and all related items, directly or indirectly required to complete the specified and indicated electrical installation.
- B. The word "concealed" shall mean that the installation will not be visible when all permanent or removable elements of the construction are in place. The word "exposed" shall mean that the installation is visible when all permanent or removable elements of the construction are in place.
- C. The word "code" shall mean any and all regulations and requirements of regulatory agencies, public and private, having jurisdiction over the work involved.
- D. The word "product" used in Division 16 means all material, equipment, machinery, and/or appliances directly or indirectly required to complete the specified and/or indicated electrical work.
- E. The words "standard product" shall mean a manufactured product, illustrated and/or described in catalogs or brochures, which are in general distribution prior to the date of issue of construction documents for bidding. Products will generally be identified by means of a specific catalog number and manufacturer's name.
- F. The word "provide shall mean furnish and install and where applicable shall also mean connect, complete installation and test.
- G. The words "powered equipment", as used in Division 16, shall mean a complex product converting and electrical energy source to:
 - 1. Heat energy.
 - 2. Mechanical power.
- H. Refer to Division 1, General Requirements, for additional definitions of words and phrases used to describe Division 16, Electrical Work.

1.06 DISTRICT FURNISHED PRODUCTS

Unless noted otherwise, all items shall be furnished by the Contractor for a complete and operational installation.

- A. All items required for a complete and operational installation shall be furnished and installed by the Contractor.
- B. District will furnish Square –D breakers for Installation by contractor at panel board "F2" at Mechanical room to contractor when requested. Contractor shall provide inventory of required breakers to district and return unused and removed breakers to district for re use.

1.07 DISCREPANCIES

- A. Where a conflict in requirements occurs between the specifications and drawings, or in the specifications or on the drawings, and a resolution is not obtained from the District/Engineer before the bidding date, the more expensive alternate will become the contractual requirements.
- B. Omissions from the drawings or specifications or the miss-description of details of work which are manifestly necessary to carry out the intent of the drawings and specifications, or which are customarily performed, shall not relieve the Contractor from performing such omitted or miss-described details of the work but they shall be performed as if fully and correctly set forth and described in the drawings and specifications.

C. The Contractor shall check all drawings furnished to him immediately upon their receipt and shall promptly notify the Engineer of any discrepancies. Figures marked on drawings shall in general be followed in preference to scale measurements. Large scale drawings shall in general govern small scale drawings. The Contractor shall compare all drawings and verify the figures before laying out the work and will be responsible for any errors which might have been avoided thereby.

1.08 CHANGES

A. The Contractor shall be responsible to make and obtain approval for all necessary adjustments in circuiting as required to accommodate the relocations of equipment and/or devices which are affected by any approved authorized changes. All changes shall be clearly indicated on the "As-Built" drawings. A copy of the progress "As-Built" drawings shall be kept at job site for review by Inspector of Record/Engineer/District.

1.09 SUBMITTALS

- A. Submit shop drawings, manufacturer's data certificates for equipment, materials and finish, and pertinent details for each system where specified in each individual section, and obtain approval before procurement, fabrication, or delivery of the items to the job site. Partial submittals are not acceptable and will be returned without review. Include the manufacturer's name, trade name, catalog model or number, nameplate data, size, layout dimensions, capacity, project specification and paragraph reference, applicable technical society publication references, and other information necessary to establish contract compliance of each item the Contractor proposes to furnish. Photographs of existing installations and data submitted in lieu of catalog data are not acceptable and will be returned without approval. Contractor shall be responsible for reviewing and certifying submittals as conforming to the drawings and specifications prior to submittal and shall verify conformance of equipment as delivered with final shop submittals, specifications and plans. Contractor shall report to Engineer any deviations prior to initiation of construction. Contractor is responsible for promptly reporting to District any news of late equipment delivery which is likely or certain to delay installation.
- B. Submit under provisions of Division 1.
- C. Proposed Products List: Include Products specified in the following Sections:
 - 1. Section 16050 Materials and Methods
 - 2. Section 16170 Grounding and Bonding
 - 3. Section 16195 Electrical Identification
 - 4. Section 16410 Enclosed Switches and Circuit Breakers
 - 5. Section 16470 Electrical Panel Boards
- D. Submit shop drawings and product data grouped and referenced by the technical Section numbers.
- E. The Contractor shall be responsible for all equipment ordered and/or installed prior to receipt of shop drawings returned from the Engineer bearing the electrical engineer's stamp of "Reviewed". All corrections or modifications to the equipment as noted on the shop drawings shall be performed and equipment removed from the job site at the request of the Engineer without additional compensation.
- F. Shop Drawings: Drawings shall be a minimum of 8.1/2 inches by 11 inches in size with a minimum scale of 1/8-inch per foot, except as specified otherwise. Include wiring diagrams and installation details of equipment indicating proposed location, layout and arrangement, control panels, accessories, piping, duct work, and other items that must be shown to assure a coordinated installation. In wiring diagrams, identify circuit terminals and indicate the internal wiring for each item of equipment and the interconnection between each item of

equipment. Indicate adequate clearance for operation, maintenance, and replacement of operating equipment devices. If equipment is disapproved, revise drawings to show acceptable equipment and resubmit.

- G. Manufacturer's Data: For each manufactured item, provide current manufacturer's descriptive literature of cataloged products, equipment drawings, diagrams, performance and characteristic curves if applicable, and catalog cuts.
- H. Standard Compliance: When materials or equipment provided by the Contractor must conform to the standards of organizations such as American National Standards Institute (ANSI) or Underwriters' Laboratories (UL), submit proof of such conformance to the Engineer for approval. If an organization uses a label or listing to indicate compliance with a particular standard, the label or listing will be acceptable evidence, unless otherwise specified. In lieu of the label or listing, submit a certificate from an independent testing organization, which is competent to perform acceptance testing and is approved by the District. The certificate shall state that the item has been tested in accordance with the specified organization's test methods and that the item conforms to the specified organization's standard.
- I. Certified Test Reports: Before delivery of materials and equipment, certified copies of all test reports specified in individual sections shall be submitted for approval.
- J. Certificates of Compliance or Conformance: Submit manufacturer's certifications as required on products, materials, finish, and equipment indicated in the technical sections. Certifications shall be documents prepared specifically for this contract. Pre-printed certifications and copies of previously submitted documents will not be acceptable. The manufacturer's certifications shall name the appropriate products, equipment, or materials and the publication specified as controlling the quality of that item. Certification shall not contain statements to imply that the item does not meet requirements specified, such as "as good as"; or "achieve the same end use and results as materials formulated in accordance with the referenced publications"; or "equal or exceed the service and performance of the specified material." Certificates shall simply state that the item conforms to the requirements specified. Certificates shall be printed on the manufacturer's letterhead and shall be signed by the manufacturer's official authorized to sign certificates of compliance or conformance.

1.10 REGULATORY REQUIREMENTS

- A. Electrical: Conform to NFPA 70, ANSI C2, and CAC Title 24, NFPA 101 and all other state and local codes.
- B. The requirements of authorities shall be the minimum acceptable requirements for the work and nothing described in these Specifications or indicated on the drawings shall be construed to permit work not conforming to the most stringent of the applicable codes and regulations. When drawings or specifications call for materials or construction of better quality of larger size than required by codes, laws, rules and regulations, the drawings and specifications shall take precedence.
- C. Equipment not complying with applicable codes shall be removed and replaced with approved equipment at Contractor's expense. UL listing labels, where applicable, shall be installed prior to shipment from factory.
- D. Obtain permits, and request inspections from authority having jurisdiction.

1.11 GUARANTEE

A. Except as may be specified under other sections in the Specifications, guarantee all equipment furnished under the Specifications for a period of one year from date of acceptance against defective workmanship and material and improper installation. Upon

notification of failure, correct deficiency immediately and without cost to the District.

B. Standard and special additional warranty of manufacturer shall apply for replacement of parts after expiration of the above period. Manufacturer shall furnish replacement parts to the District or their service agency as directed. Furnish manufacturer's warranties in accordance with Division 0 of this Specification.

1.12 PROJECT/SITE CONDITIONS

- A. Install work in locations shown on drawings, unless prevented by project conditions.
- B. Prepare drawings showing proposed rearrangement of work to meet project conditions, including changes to work specified in other Sections. Obtain permission of District before proceeding.

1.13 OPERATION AND MAINTENANCE MANUAL

Submit as required for systems and equipment indicated in the technical sections. Furnish six copies, bound in hardback binders or an approved equivalent. Furnish one complete manual prior to performance of systems or equipment tests, and furnish the remaining manuals prior to contract completion. Inscribe the following identification on the cover; the words "OPERATION AND MAINTENANCE MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment. Include a table of contents and assemble the manual to conform to the table of contents, with the tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in. The manual shall include:

- A. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the system or equipment.
- B. A control sequence describing startup, operation, and shutdown.
- C. Description of the function of each principal item of equipment.
- D. Installation and maintenance instructions.
- E. Safety precautions.
- F. Diagrams and illustrations.
- G. Testing methods and test equipment required.
- H. Performance data.
- I. Parts list. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
- J. Appendix: List qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.

1.14 POSTED OPERATING INSTRUCTIONS

Furnish approved operating instructions for systems and equipment indicated in the technical sections for use by operation and maintenance personnel. The operating instructions shall include wiring diagrams, control diagrams, and control sequence for each principal system and equipment. Print or engrave operating instructions and frame under glass or in approved laminated plastic. Post instructions as directed. Attach or post operating instructions adjacent to each principal system and equipment including startup, proper adjustment, operating, lubrication,

shutdown, safety precautions, procedure in the event of equipment failure, and other items of instruction as recommended by the manufacturer of each system or equipment.

Provide weather-resistant materials or weatherproof enclosures for operating instructions exposed to the weather. Operating instructions shall not fade when exposed to sunlight and shall be secured to prevent easy removal or peeling.

1.15 INSTRUCTION TO DISTRICT PERSONNEL

Where indicated in the technical sections, furnish the services of competent instructors to give full instruction to District personnel in the adjustment, operation, and maintenance of systems and equipment, including pertinent safety requirements as required. Each instructor shall be thoroughly familiar with all parts of the installation and shall be trained in operating theory as well as practical operation and maintenance work. Coordinate schedule of instructional class with District during the first regular work week after the equipment or system has been accepted and turned over to District for regular operation.

1.16 CATALOGED PRODUCTS/SERVICE AVAILABILITY

Materials and equipment shall be current products by manufacturers regularly engaged in the production of such products. Products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year period shall include applications of equipment and materials under similar circumstances and of similar size. The 2-year period shall be satisfactorily completed by a product for sale on the commercial market through advertisements, manufacturer's catalogs, or brochures. Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturer's factory or laboratory tests, is furnished. The equipment items shall be supported by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.17 MANUFACTURER'S RECOMMENDATIONS

Where installation procedures or any part thereof are required to be in accordance with manufacturer's recommendations, furnish printed copies of the recommendations prior to installation. Installation of the item shall not proceed until recommendations are received. Failure to furnish recommendations shall be cause for rejection of the equipment or material.

1.18 DELIVERY AND STORAGE

Handle, store, and protect equipment and materials in accordance with the manufacturer's recommendations and with the requirements of NFPA 70B P, Appendix I, Titled "Equipment Storage and Maintenance during Construction." Replace damaged or defective items with new items.

1.19 ELECTRICAL REQUIREMENTS

Furnish internal wiring for components of packaged equipment as an integral part of the equipment. Power wiring and conduit shall conform to the requirements of Section 16050 "Basic Materials and Methods."

PART 2 - PRODUCTS

Not Used.

PART 3 - EXECUTION

3.01 Obtain and pay for all permits and inspections, including any independent testing required to verify standard compliance, and deliver certificates for same to District. All work shall conform to the requirements of NFPA 70, Title 24, California Code of Regulations (CCR).

3.02 WORK RESPONSIBILITIES

- A. The drawings indicate diagrammatically the desired locations or arrangement of conduit runs, outlets, equipment, etc., and are to be followed as closely as possible. Proper judgement must be exercised in executing the work so as to secure the best possible installation in the available space and to overcome local difficulties due to space limitations or interference with structural conditions. The contractor is responsible for the correct placing of his work and the proper location and connection of his work in relation to the work of other trades. Advise appropriate trade as to locations of access panels.
- B. Locations shown on architectural ceiling plan or on wall elevations shall take precedence over electrical plan locations but where a major conflict is evident, notify the Engineer for instructions.
- C. In the event changes in the indicated locations or arrangements are necessary, due to developed conditions in the building construction or rearrangement of furnishings or equipment, such changes shall be made without extra cost, providing the change is ordered before the conduit runs, etc., and work directly connected to same is installed and no extra materials are required.
- D. Where equipment is furnished by others, verify dimensions and the correct locations of this equipment before proceeding with the roughing-in of connections.
- E. Lighting fixtures in mechanical spaces are shown in their approximate locations only. Do not install light outlets or fixtures until mechanical piping and duct work is installed; then lights shall be installed in locations best suited for equipment arrangement or as directed by the Engineer.
- F. All scaled and figured dimensions are approximate of typical equipment of the class indicated. Before proceeding with any work, carefully check and verify all dimensions, sizes, etc. with the shop drawings to see that the equipment will fit into the spaces provided without violation of applicable codes.
- G. Should any changes to the work indicated on the drawings or described in the specifications be necessary in order to comply with the above requirements, notify the Engineer immediately and cease work on all parts of the contract which are affected until approval for any required modifications to the construction has been obtained from the Engineer.
- H. Be responsible for any cooperative work which must be altered due to lack of proper supervision or failure to make proper provisions in time. Such changes shall be under direction of the Engineer and shall be made to his satisfaction.
- I. Perform all work with competent and skilled personnel.
- J. All work, including aesthetic as well as electrical and mechanical aspects of the work, shall be of the highest quality consistent with the best practices of the trade.
- K. Replace or repair, without additional compensation, and any work which, in the opinion of the Engineer, does not comply with these requirements.

3.03 PAINTING OF EQUIPMENT

- A. Factory Applied: Electrical equipment shall have factory-applied painting systems which shall, as a minimum, meet the requirements of NEMA ICS 6 corrosion-resistance test, except equipment specified to meet requirements of ANSI C37.20 shall have a finish as specified in ANSI C37.20.
- B. Field Applied: Paint electrical equipment as required to touch up, to match finish on other equipment in adjacent spaces or to meet safety criteria.

C. When not already covered under the painting section of the specifications, all electrical work exposed to view shall be painted in accordance with the painting section of the specifications to match surroundings. Work to be painted shall include conduit, hangars, outlet boxes, pull boxes, surface raceway and similar items.

SECTION 16030 ELECTRICAL ACCEPTANCE TESTING

PART 1 - GENERAL

- 1.01 SECTION INCLUDES: Acceptance testing requirements for electrical power systems.
- 1.02 APPLICABLE CODES AND PUBLICATIONS: The following publications form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. Use latest applicable codes adopted and enforced by Authorities Having Jurisdiction (AHJ).

APPLICABLE PUBLICATIONS: The following publications form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

- A. American National Standards Institute, Inc. (ANSI) Publication:
 - 1. C2-93 National Electrical Safety Code
 - 2. C37.16-88 Low-Voltage Power Circuit Breakers and AC Power Circuit Protectors -Preferred Ratings, Related Requirements and Application Recommendations
- B. International Electrical Testing Association Inc. (NETA) Publication:
 - 1. ATS-1999 Acceptance Testing Specifications for Electrical Power Distribution Equipment and Systems
- C. Institute of Electrical and Electronic Engineers (IEEE) Publications:
 - 1. 141-86 Recommended Practice for Electric Power Distribution for Industrial Plants
 - 2. 242-86 Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems
 - 3. 399-90 Recommended Practice for Industrial and Commercial Power System Analysis
 - 4. 446-87 Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications
- D. National Fire Protection Association (NFPA) Publication:
 - 1. 70-2011 National Electrical Code (NEC) with latest 2013 California Electrical Code (CEC) amendments.

1.03 SUBMITTALS

- A. Submit six (6) copies under provisions of Section 16010.
- B. Qualifications: Provide for:
 - 1. Designated project safety representative.
 - 2. Certified Engineering Technician(s) to be assigned to the project.
- C. Acceptance Test Procedures: Provide for:
 - 1. Panel Boards.
 - 2. Grounding systems.
 - 3. Conductors and Cables.
 - 4. HV units operation and testing.
- D. Certified Test Reports: The final report shall be signed and shall include the following information: Summary of the project, description of the equipment tested, visual inspection

report, description of the tests, test results, conclusions and recommendations, appendix including appropriate test forms, and identification of the test equipment used. Provide bound copies for:

- 1. Panel Boards.
- 2. Grounding systems.
- 3. Conductors and Cables.
- 4. HV units operation and testing.

1.04 QUALIFICATIONS

- A. The contractor shall engage the services of a qualified testing personnel to provide final inspection, testing, calibration, and adjusting on the electrical distribution system as defined in this Section. The testing personnel shall have been engaged in full practice for a minimum of five years.
- B. The testing organization shall have a calibration program with accuracy traceable every six months, and in an unbroken chain, to the National Institute of Standards and Technology (N.I.S.T.).
- C. The testing organization shall have a designated safety representative on the project. The safety standards shall include OSHA and NFPA 70E.
- D. Testing and inspection shall be performed by an Engineering Technician, certified by a National organization, with a minimum 5 years experience inspecting, testing and calibrating electrical distribution equipment, systems and devices. Information on the qualifications of the Certified Engineering Technician shall be submitted to the Engineer for approval prior to the start of work.
- E. The qualifications of the testing personnel shall be submitted to the Engineer/District for approval minimum 30 days prior to the start of testing.

PART 2 - PRODUCTS

Not Used.

PART 3 - EXECUTION

- 3.01 ALL INSPECTIONS SHALL BE PERFORMED in accordance with applicable codes and standards including NEC, CEC, ANSI, IEEE, NEMA and OSHA.
 - A. The testing organization shall provide all materials, equipment, labor and technical supervision to perform the inspections and tests.

3.02 INSPECTION

- A. A visual inspection of the installed equipment shall be performed by the testing organization to verify that the distribution equipment installed and to be tested is the equipment denoted on the approved shop drawings. The inspection shall check the equipment designations, device characteristics, special installation requirements, applicable codes and standards.
- B. After completion of the visual inspection, a report shall be developed stating any discrepancies that may have been found.

3.03 TESTING, CALIBRATION AND ADJUSTMENT

A. The testing organization shall perform tests on each item of distribution equipment identified in accordance with the latest edition of the International Electrical Testing Association's

(NETA) Acceptance Testing Specification for Electrical Power Distribution Equipment and Systems.

- B. Field acceptance testing shall be accomplished on each item of electrical distribution equipment installed or connected as part of this contract. This shall include:
 - 1. Panel Boards.
 - 2. Grounding systems.
 - 3. Conductors and Cables.
 - 4. HV units operation and testing.
- C. Systems shall be energized or otherwise placed in service only after completion of all required tests and an evaluation of the test results has been completed.
- 3.04 CORRECTION OF DEFICIENCIES: Any deficiencies found shall be rectified, and work affected by such deficiencies shall be completely re-tested at the Contractor's expense. Final acceptance of the electrical power system is contingent upon satisfactory completion of the acceptance and system function tests.

SECTION 16050 BASIC MATERIALS AND METHODS

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Conduit
- B. Fittings and Conduit Bodies
- C. Surface Raceways
- D. 600 Volt Wires
- E. Boxes
- F. Wiring Devices
- G. Cabinets and Enclosures

1.02 RELATED SECTIONS

- A. Section 16010 Electrical General Requirements, applies to this section, with the additions and modifications specified herein.
- B. Section 16170 Grounding and Bonding.
- C. Section 16195 Electrical Identification
- D. Section 16740 Electrical Panel Boards

1.03 APPLICABLE PUBLICATIONS

The following publications form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

- A. American National Standards Institute, Inc. (ANSI) Publications
 - 1. C80.1-95 Rigid Steel Conduit, Zinc Coated
 - 2. C80.3-95 Electrical Metallic Tubing, Zinc Coated
 - 3. C80.5-95 Specification for Rigid Aluminum Conduit
 - 4. FB 1-97 Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit and Cable Assemblies
 - 5. OS 1-84 Sheet-Steel Outlet Boxes, Device Boxes, Covers and Box Supports
 - 6. OS 2-86 Nonmetallic Outlet Boxes, Device Boxes, Covers and Box Supports
- B. National Electrical Manufacturers Association (NEMA) Publications:
 - 1. ABI-93 Molded Case Circuit Breakers
 - 2. ICS6-93 Industrial Controls and Systems Enclosures
 - 3. KS 1-96 Enclosed Switches
 - 4. TC 2-90 Electrical Plastic Tubing (EPT) and Conduit (EPC-40) and (EPC-80)
 - 5. WD 1-83 General Requirements for Wiring Devices
 - 6. WD 6-88 Wiring Device Dimensional Requirements
- C. National Fire Protection Association (NFPA) Publication:
 - 1. 70–2011 National Electrical Code (NEC)

- D. Underwriters Laboratories, Inc. (U.L.) Publications:
 - 1. 1-93 Standard for Flexible Metal Conduit
 - 2. 6-93 Rigid Metallic Conduit
 - 3. 50-95 Cabinet and Boxes
 - 4. 83-91 Thermoplastic Insulated Wires
 - 5. 198E-88 Class R Fuses
 - 6. 360-96 Liquid-tight Flexible Steel Conduit
 - 7. 486A-91 Wire Connectors and Soldering Lugs, for use with Copper Conductors
 - 8. 498-96 Attachment Plugs and Receptacles
 - 9. 508-93 Industrial Control Equipment
 - 10. 510-94 Insulating Tape
 - 11. 514A-91 Metallic Outlet Boxes
 - 12. 514B-89 Fittings for Conduit and Outlet Box
 - 13. 0651-95 Schedule for 40 & 80 Rigid PVC Conduit
 - 14. 797-93 Electrical Metallic Tubing
 - 15. 1242-96 Standard for Intermediate Metal Conduit
- E. 2013 State of California Administrative Codes:
 - 1. Title 24, Part 1, Part 2, Part 3 and Part 6 Standards

1.04 SUBMITTALS

- A. Submit under provisions of Section 16010 and Division -1.
- B. Product Data: Provide for:
 - 1. Conduit (all types)
 - 2. 600 Volt Wires
 - 3. Receptacles (all types)
 - 4. Switches (all types)
 - 5. Surface Raceways
 - 6. Cabinets and Enclosures
 - 7. Safety Switches
- C. Test Reports: Provide for:
 - 1. Insulation resistance tests of low voltage conductors.
 - 2. Operational tests.

1.05 PROJECT RECORD DOCUMENTS

- A. Submit under provisions of Division 01.
- B. Accurately record actual routing of all conduits larger than 2 inches.
- C. Accurately record actual locations and mounting heights of outlet, pull and junction boxes.
- D. Accurately record actual location of each new equipoment.

1.06 REGULATORY REQUIREMENTS

- A. Conform to requirements of ANSI/NFPA 70 and with all state adopted amendments, except where requirements herein are more stringent.
- B. Furnish products listed and classified by Underwriters Laboratories, Inc. or a testing firm acceptable to authority having jurisdiction as suitable for purpose specified and shown.

1.07 QUALITY ASSURANCE

In each standard referenced to herein, consider the advisory provisions to be mandatory, as though the word "shall" has been substituted for "should" wherever it appears. Interpret references in these standards to "authority having jurisdiction," or other words of similar meaning, to mean District.

1.08 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, protect, and handle Products to site under provisions of Section 16010.
- B. Protect conduit from corrosion and entrance of debris by storing above grade. Provide appropriate covering.

1.09 PROJECT CONDITIONS

- A. The drawings are diagrammatic and shall not be scaled for exact locations: Field conditions and non-interference with other utilities and trades, shall determine exact locations.
- B. Verify routing and termination locations of conduit prior to rough-in.
- C. Conduit routing is shown on Drawings in approximate locations unless dimensioned. Route as required to complete wiring system.

PART 2 - PRODUCTS

2.01 MATERIALS AND EQUIPMENT

Materials and equipment shall conform to the respective specifications and standards and to the specifications herein. Electrical ratings shall be as indicated. Except where specifically indicated otherwise, provide only new materials having all legally required approvals and/or labels. Items of a similar nature shall be of the same type and manufacturer.

2.02 CONDUIT

- A. Rigid Steel Conduit (Zinc-coated): ANSI C80.1, UL 6, hot-dip galvanized, threaded type.
- B. Intermediate Metal Conduit: UL 1242, zinc coated steel only.
- C. Electrical Metallic Tubing: UL 797, ANSI C80.3.
- D. Rigid Aluminum Conduit: ANSI C80.5, UL 6.
- E. Rigid Plastic Conduit: NEMA TC-2, UL 651, PVC Schedule 40, Carlon or approved equal.
- F. Flexible Metal Conduit: UL 1.
- G. Liquid tight Flexible Metallic Conduit: UL 360, Interlocked steel construction with a polyurethane jacket, Electri-Flex Liquatite® type CEA or approved equal.

2.03 FITTINGS

- A. Fittings for Rigid Metallic Conduit and Intermediate Metallic Conduit: UL 514B, threaded-type.
- B. Fittings for EMT: Compression type. Split/set screw couplings unacceptable.
- C. Fittings for Flexible Metal Conduit: ANSI/NEMA FB 1.
- D. Expansion/Deflection Fittings: Provide fitting capable of a straight line expansion movement of 2" in either direction and a movement of 3/4" from the normal in all other directions, OZ Gedney Type AX DX. Provide complete with grounding and bonding jumpers.

2.04 CONDUCTORS

Conductors shall bear the date of manufacture imprinted on the insulation with other identification. Wire and cable manufactured more than 6 months before delivery to the job site shall not be used.

- A. 600 Volt Wires and Cables: UL 83. Conductors shall be stranded copper. Insulation shall be type THHN/THWN unless otherwise noted.
- B. Color Coding: Color shall be green for grounding conductors and white for neutrals; except where neutrals of more than one system are installed in same raceway or box, other neutral shall be white with colored (not green) stripe. Color of ungrounded conductors in different voltage systems shall be as follows:

208Y/120 volt, 3Ø 4 wire:

- 1. Phase A black
- 2. Phase B red
- 3. Phase C blue.
- 4. Neutral White.
- 5. Ground Green.
- C. Minimum size for branch circuits shall be No. 12 AWG, THHN/THWN copper stranded/solid unless otherwise noted.

2.05 OUTLET BOXES

- A. Sheet Metal Outlet Boxes: ANSI/NEMA OS 1, galvanized steel.
 - 1. Luminaire and Equipment Supporting Boxes: Rated for weight of equipment supported; include 1/2 inch male fixture studs where required.
 - 2. Concrete Ceiling Boxes: Concrete type.
- B. Cast Boxes: NEMA FB 1, Type FD, cast ferroalloy. Provide gasketed cover and threaded hubs by box manufacturer.

2.06 RECEPTACLES: UL 498 and NEMA WD 1

- A. Receptacles shall be NEMA 5-20R unless otherwise indicated on the drawings. Acceptable manufacturers: Hubbell, Pass & Seymour, Leviton or approved equal.
- B. Weatherproof Receptacles: For flush mounted weatherproof convenience outlets, provide duplex receptacles as listed above with gasketed stainless steel cover plate and gasketed cap over each receptacle opening, Sierra WP series. Where surface mounted, use cast box with gasketed cast aluminum plate having duplex lift covers, Hubbell No. 5206. Receptacles shall be UL listed for use in "wet locations."
- C. All receptacles located in mechanical rooms, electrical rooms, and on exterior of building shall be GFCI type. In addition to this requirement, provide GFCI type receptacles where indicated on the drawings.

2.07 SWITCHES: NEMA WD 1

- A. General Purpose wall switches shall be heavy-duty, 20A, 277V AC, general use snap switch with ivory handle. Provide single pole, 2-pole, 3-way, 4-way, momentary contact, weatherproof, lock or other type switches indicated. Acceptable manufacturers: Hubbell, Pass & Seymour, Leviton or approved equal.
- B. Timer switches shall be solid state type with adjustable time range from 10 minutes to 12 hours. The control shall be tamperproof with out-of-site programming dial with warning flicker. The control shall be rated to switch up to 1300 watts of incandescent or 1000 watts of fluorescent loads. Acceptable manufacturer: Paragon Electric Company or approved equal.

C. AC Manual Motor Starting Switches: UL 508. Acceptable manufacturers: Hubbell, Pass & Seymour, Leviton or approved equal.

2.08 DEVICE PLATES

- A. Provide UL listed, one-piece device plates for all wiring devices, for telephone and computer outlets and for outlet boxes used as junction or pull boxes. For metal outlets and fittings, plates shall be of zinc-coated sheet steel or cast metal having round or beveled edges. Plates installed in wet locations shall be gasketed and UL listed for "wet locations."
- B. Provide 3/16" high block letters, black enamel filled machine engraving for new device plates under any of the following conditions listed below. Use designations indicated or select words to best describe purpose of each device.
 - 1. All receptacle device plates.
 - 2. Plates containing more than three switch devices.
 - 3. Plates for switches controlling loads, where such loads are not visible from the switch location.
 - 4. Selector switches.
 - 5. Manual motor starting switches.
 - 6. Special outlets where indicated.
 - 7. Control switches.

2.09 CABINETS: UL 50.

- A. Cabinets for same type of use shall be the product of a single manufacturer.
- B. Construct of cold-rolled drawing quality steel, with metal gages and construction methods conforming to National Electrical Code requirements, and Underwriters Laboratories' standards. Provide 12 gauge G-90 grade galvanized steel minimum, unless otherwise noted.
- C. Finish doors, trims, and back boxes for surface-mounted cabinets in finished areas by applying a rust-resistant treatment, prime coat, and a final coat of manufacturer's standard enamel or lacquer finish. Galvanize all other sheet metal components of cabinets including back boxes for flush cabinets, excepting non-ferrous metal parts, or steel parts provided with cadmium plating or equivalent protective plating.
- D. Equip doors with concealed or semi-concealed hinges and with flush or semi-flush spring catch type flush cylinder locks. Key cabinet doors of similar use alike, and provide two keys with each lock.
- E. Equip cabinets for use with telephone, alarm or signal systems with a 0.5" thick plywood backboard. Equip cabinets with terminal strips where so specified. Equip cabinets with nameplates.
- F. Surface cabinets shall be furnished without knockouts. Punch or drill required openings during installation. Equip flush back boxes with manufacturer's standard pattern of knockouts.
- G. Equip cabinet doors exceeding 40" in height with vertical bolt three point locking mechanisms.
- H. Acceptable manufacturers: Products from (or approved equal) to the following manufacturers are acceptable.
 - 1. Cabinets for general use: Hoffman Engineering Co., Square D, or Columbia Manufacturing Co.
 - 2. Cabinets for systems and/or products, use cabinets furnished by manufacturer with system or product. Where system or product cabinets do not comply with these Specifications, submit cabinet shop drawings, indicating deviations, and obtain approval

for their use.

2.10 JUNCTION BOXES AND PULL BOXES: UL 50

- A. Provide pull and junction boxes of Code gauge steel sized as indicated or required. Provide 16 gauge steel minimum, unless otherwise noted. Indoor enclosures shall conform to NEMA ICS 6 for the type 1, unless otherwise noted.
- B. Size junction and pull boxes to not less than minimum Code requirements. Increase size above Code requirements where necessary to provide space for pulling, racking or splicing enclosed conductors, or where specified or indicated dimensions exceed Code requirements.
- C. Fabricate sheet metal junction and pull boxes of galvanized, Code gage, sheet steel. Include angle iron framing where required for rigidity. Boxes shall not deflect or deform visibly when covers are removed after conduit and conductors are installed, and any deflection occurring shall not prevent the easy installation and removal of cover attachment screws.
- D. Do not use single covers for junction and pull boxes having cover length or width dimension exceeding three feet unless so specified, indicated, or approved. Sectionalize covers that exceed three feet in either dimension into two or more sections.
- E. For interior junction and pull boxes located in concrete floors, and 24" square or smaller, use cast iron boxes with integral cast tapped conduit hubs, and having recessed cover flush in the box trim placing all elements of the face of the box flush in the plane of the surrounding floor. Equip boxes with watertight covers where so indicated.
- F. Interior ceiling mounted pull boxers shall be a minimum 24" x 24" x 6" opening downward into room area and construction to receive the minimum number of conduit plus 50 percent.
- G. Equip surface sheet metal junction and pull boxes with covers aligning with the sides of the boxes and equip flush boxes with covers extending 3/4" all around the perimeter of the back box. Provide sufficient cover attachment screws to ensure that box covers will contact the surface of the box for the entire perimeter of the enclosure. Use 316 stainless steel fasteners to attach covers to boxes.
- H. Use brass screws to attach junction and pull box covers to interior floor boxes or to boxes located where moisture may be present.
- I. Acceptable manufacturers:
 - 1. Sheet steel junction and pull boxes: Columbia Electric Co., .Hoffman Engineering Co., Pico Metal Products Co.
- 2.11 WIRE CONNECTORS AND TERMINALS: For use with copper conductors. UL 486A.

2.12 INSULATING TAPES: UL 510. NAMEPLATES: Provide as specified in Section 16195, "Electrical Identification." LIGHTING: Provide all required hardware to install fixtures and specified fixtures.

PART 3 - EXECUTION

3.01 INSTALLATION: Electrical installation shall conform to requirements of NFPA 70, state and local codes, and to requirements specified herein.

3.02 LOCATIONS

A. The drawings indicate diagrammatically the desired locations and arrangements of the components of the electrical work. Follow the drawings as closely as possible, but use

judgment and coordinate with other trades to secure the best possible installation in the available space and under the developed conditions.

- B. Before installing any equipment, conduit, or locating any outlet, examine the complete set of documents, including shop drawings and specifications, and verify all dimensions and space requirements. Make such minor adjustments as may be necessary to fit the building structure and accommodate the work of other trades. Install all electrical work to preserve legal headroom, access, work space, clearances and to keep openings and passage ways clear. Arrange for additional space if required for the servicing, maintenance, and replacement of the electrical equipment.
- C. Control devices shall not be mounted more than 6'-6" above the floor.
- D. Prior to installation, the District reserves the right to relocate any outlet or device within six feet of the location indicated on the plans and at no additional cost to the District.
- E. No additional compensation will be allowed for omissions, inadequate space, misunderstandings or rejected work caused by neglect of these requirements.

3.03 CONDUIT

- A. Rigid steel conduit may be used in all locations. Rigid steel conduit shall not be installed below grade in direct contact with earth; it shall be encased in 3" concrete envelope or painted with two coats of black asphalt paint.
- B. Intermediate metal conduit (IMC) may be used in lieu of rigid steel conduit where permitted by Code.
- C. Aluminum Conduit: Use not permitted.
- D. Electrical metallic tubing (EMT) may be installed in indoor dry locations only; it shall not be installed lower than four feet above the finished floor. Restrictions applicable to EMT:
 - 1. Do not use in feeder circuits.
 - 2. Do not install below grade.
 - 3. Do not encase in concrete.
 - 4. Do not use in areas subject to severe physical damage (including, but not limited to, mechanical equipment rooms and electrical equipment rooms).
 - 5. Do not use in hazardous areas.
 - 6. Do not use outdoors.
- E. Use flexible metallic conduit in short lengths for final connections to lighting fixtures in accessible ceilings, motors, transformers and other vibration type equipment, or with the approval of the Architect, where absolutely necessary due to structural conditions. Use liquid tight flexible metal conduit where flexible conduit is exposed to weather, oil or moisture. Provide green ground conductor in all flexible conduit.
- F. Install conduit in accordance with NECA "Standard of Installation." The electrical drawings are diagrammatic and do not show all offsets, bends, fittings, junction boxes, pull boxes and expansion fittings required to meet field conditions. Determine actual material and hardware requirements and verify all dimensions by field inspection.
- G. Arrange supports to prevent misalignment during wiring installation.
- H. Support conduit using coated steel or malleable iron straps, lay-in adjustable hangers, clevis hangers, and split hangers.
- I. Group related conduits; support using conduit rack. Construct rack using steel channel provide space on each for 25 percent additional conduits.

- J. Arrange conduit to maintain headroom and present neat appearance.
- K. Route exposed conduit parallel and perpendicular to walls.
- L. Maintain adequate clearance between conduit and piping.
- M. Maintain 12 inch clearance between conduit and surfaces with temperatures exceeding 104 degrees.
- N. Cut conduit square using saw or pipe cutter; de-burr cut ends.
- O. Bring conduit to shoulder of fittings; fasten securely.
- P. Provide pull fittings in all overhead conduit runs exceeding 200 feet of straight conduit, or having more than the equivalent of three 90 degree bends. Each 90 degree bend shall be considered the equivalent of 50 feet of straight run. Use conduit bodies to make sharp changes in direction, as around beams. Use hydraulic one-shot bender to fabricate or factory elbows for bends in metal conduit larger than 2 inch size.
- Q. Where conduit passes from one type of construction to another, or where there is a possibility of dissimilar movements, an expansion/deflection device or a suitable loop of seal tight flexible conduit shall be installed. Looped seal tight flexible conduit shall consist of 18" minimum length of looped conduit with a junction box at one or both ends, wherever conduit crosses building seismic joints.
- R. Avoid moisture traps; provide junction box with drain fitting at low points in conduit system.
- S. Provide 1/8" diameter polyethylene pull line in each new empty conduit except sleeves and nipples.
- T. Conduit which penetrates fire walls, fire partitions, or floors shall be metallic on both sides of fire walls, fire partitions, or floors for minimum distance of 6 inches. Restore fire rating integrity at conduit penetration. All holes created to extend electrical systems through fire rated floors and walls shall be sealed by the electrical contractor with an intumescent material capable of expanding up to 8 to 10 times when exposed to temperatures beginning at 250°F. It shall be UL Classified and have I.C.B.O., B.O.C.A.I. and S.B.C.C.I. (NRB 243) approved ratings to three hours per ASTM E-814 (UL 1479).
- U. Acceptable Manufacturers: 3M, Carborundum, Hevi-Duty/Nelson, or approved equal.
- V. Where conductors of No. 4 AWG or larger are to be installed in a conduit, or where any conductors are to be deflected more than 30 degrees when leaving a conduit, terminate the conduit with an insulating bushing.
- W. Ground and bond conduit under provisions of Section 16170.

3.04 600 VOLT CONDUCTORS

- A. Splices:
 - 1. Splices in conductors #8 AWG and smaller shall be made with "Scotchlok" insulated connectors or equal of proper size for conductors being spliced.
 - 2. Splices in conductors #6 AWG and larger shall be made with pressure type solder less connectors. The splice area shall be taped to provide equal or greater insulation than the original. Tape run-back over the original insulation shall extend 3 to 5 overall diameters of the insulated wire.
- B. Conductors and terminal lugs shall be used for terminating stranded conductors #6 AWG and larger and shall be T&B, Iscor, or approved equal solder less connectors.
- C. Wire in panels, cabinets, pull boxes and wiring gutters shall be neatly grouped, strapped

together with T&B Model Tyrap cable strap or laced with #12 stranded lacing twine and fanned out to the terminals.

- D. Neutral conductor shall be continuous in outlet boxes and shall not be broken by addition or removal of devices.
- E. Wiring methods in return air plenum spaces shall comply with NEC 300-22.

3.05 FITTINGS

- A. Use threaded fittings for rigid metal conduit and compression fittings for tubing.
- B. Use cement-on fittings for plastic conduit and tapered drive-on fittings for fiber conduit.
- C. Fittings for flexible conduit shall be of the threadless hinged clamp type. Do not use fittings threaded internally into the flexible conduit ends.
- D. Use fittings made of the same material as the raceway except:
 - 1. Malleable iron and steel are interchangeable.
 - 2. Die cast fittings may be used for flexible steel conduit and for factory manufactured offsets.
 - 3. Use aluminum fittings only with aluminum conduit.
 - 4. Use plastic insulated bushings for conduit sizes larger than 1".
 - 5. Use insulated throat connectors for electrical metallic tubing.

3.06 CABINETS

- A. Set cabinets at heights indicated or specified. In the absence of such information, set cabinets at not to exceed 6'-6" from finish floor to top of cabinet.
- B. Align tops of cabinets in sight of each other at a uniform height.
- C. Install cabinets and other enclosure products in plumb with the building construction. Install flush enclosures so that the trim will rest against the surrounding surface material around the entire perimeter of the enclosure.
- D. Do not locate cabinets (or other electrical enclosures) where room doors will touch enclosure face when room door is opened 180°. Locate cabinets (and other enclosures) so that enclosure door can be opened through a minimum 180° arc, except that the arc may be reduced to 130° for enclosures mounted to wireways. Do not install surface mounted cabinets in finished areas, unless so indicated. Where conflicting data is indicated, verify mounting requirements prior to ordering cabinets.

3.07 WIRING DEVICES

- A. Use products of a single manufacturer for each type of wiring device. Different manufacturers may be used for different type devices, if the requirements of the specification are fulfilled.
- B. Use the products of a single manufacturer for all device plates. Obtain prior approval for any variations from this requirement except that plate variations are allowed for the following devices:
 - 1. Where the selected plate manufacturer does not manufacture a suitable finish plate.
 - 2. Where the raceway system enclosure employs a non-standard finish plate.
 - 3. Where non-standard plates are specified or indicated.
- C. Where pilot lights are indicated, use incandescent lamp and jewel type lens mounted in the same outlet as the switch, with common finish plate. Pilot lights shall be "on" when controlled load is "on".

- D. Substitute key operations for toggle where locking switches are indicated. Provide not less than two keys for each such switch, except not more than ten keys of the same pattern for the total project. Use only keys that are compatible with key system established for site.
- E. Position receptacles so that the ground contact in grounding type receptacles is on bottom of parallel prongs.
- F. Install adjacent devices of the same type and with the same mounting height in a common outlet box.
- G. Prior to installation of switch outlets, examine architectural plans and verify locations. Place switches in the wall at the latch side of the door.
- H. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with specialty building equipment requiring very exact electrical rough-in.

3.08 BOXES, OUTLETS AND SUPPORTS:

Provide boxes in wiring or raceway systems wherever required for pulling of wires, making connections, and mounting of devices or fixtures. Boxes for metallic raceways shall be cast-metal, hub-type when located in wet locations, when surface mounted on outside of exterior surfaces, when installed exposed up to 7 feet above interior floors, when installed under raised floor or when installed in hazardous areas. Boxes in other areas shall be sheet steel. Each box shall have volume required by NFPA 70 for number of conductors enclosed in the box. Provide gaskets for cast-metal boxes installed in wet locations.

3.09 JUNCTION AND PULL BOXES

- A. Wherever possible use outlet boxes for junction and pull boxes.
- B. Locate interior junction and pull boxes in machine rooms, equipment rooms, storage rooms, electrical rooms and similar utility spaces unless otherwise indicated or approved. Where junction or pull boxes must be used in finished areas, use flush boxes only equipped with prime finished sheet metal plates. Fasten plates to boxes with countersunk flat head screws. Provide plates with 3/4" trim all around.
- C. Do not use sectionalized boxes except where indicated. Do not mix feeder and branch circuit conductors in a common pull or junction box.
- D. Where several feeders pass through common pull box, tag feeders to indicate circuit number and panel designation.

3.10 OPENINGS, CHASES AND SLEEVES

- A. Provide openings, chases, cutting, patching, sleeves and other products, necessary to permit the electrical raceways and cables to pass through the structure.
- B. Establish locations for openings, chases and sleeves sufficiently in advance of construction to avoid cutting and patching. Perform any required cutting and patching for electrical work and obtain approval for cutting from Architect prior to work being done.
- C. Repair damages to finished work and surfaces caused by cutting, to the satisfaction of District.
- D. Install sleeves wherever raceways of any type pass through walls or floors above grade, except that sleeves are not required for drywall construction or laid up masonry construction used for interior partitions and not fire rated.

- E. Use pipe or sheet steel sleeves for interior dry locations.
- F. Install sleeves with both ends flush with wall surfaces and with upper ends 3" above floor surfaces. Install bottom end of floor sleeves flush with slabs if not concealed by ceiling system. Use steel pipe sleeves through floors.
- G. Core drill existing concrete walls or slabs to pass new runs of conduit or tubing. Seal core drilled openings as described for sleeves.

3.11 MOUNTING HEIGHTS:

Mount disconnecting switches so height of operating handle at its highest position is maximum 78 inches above floor or platform. When installing switch next to existing switch, match mounting height of existing switch.

3.12 FIELD TESTS:

As an exception to requirements that may be stated elsewhere in the contract, the District shall be given minimum 5 working days notice prior to each test. The Contractor shall provide all test equipment and personnel and submit written copies of all test results.

A. Distribution Conductors, 600 Volt Class: Test all conductors #10 AWG and larger to verify that no short circuits or accidental grounds exist. Tests shall be made using an instrument which applies a voltage of approximately 500 volts and providing a direct reading of resistance in ohms. Insulation resistance, corrected to 60°F, shall not be less than the following values:

250-750 kcmil	50 megohms
4-4/0 AWG	50 megohms
10-6 AWG	100 megohms
ord resistance i	readings temperature and weather conditions on the test f

Record resistance readings, temperature and weather conditions on the test form.

B. Operational Tests: Demonstrate the operation of each switch, relay and other item of electrical control with the system fully energized and operating. Each shall be demonstrated three times. Any faulty or defective Contractor furnished materials and workmanship found during the tests shall be replaced or corrected by the Contractor at no additional cost to the District.

SECTION 16060 ELECTRICAL DEMOLITION

PART 1 - GENERAL

- 1.01 SECTION INCLUDES
 - A. Electrical demolition.
- 1.02 APPLICABLE PUBLICATIONS: The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
 - A. Environmental Protection Agency (EPA) Regulations:
 - 1. 40 CFR 261 Regulations Identifying Hazardous Waste
 - 2. 40 CFR 262 Regulations for Hazardous Waste Generators
 - 3. CFR 263 Regulations for Hazardous Waste Transporters
 - 4. 40 CFR 264 Regulations for Owners and Operators of Permitted Hazardous Waste Facilities
 - B. State of California Administrative Codes:
 - 1. Title 22, Division 4, Chapter 30 Minimum Standards for Management of Hazardous and Extremely Hazardous Wastes
 - C. U.S. Department of Labor, Occupational Safety and Health Administration (OSHA) Regulation:
 - 1. 29 CFR 1910.94 Subpart G, Occupational Health and Environmental Control
 - D. Department of Transportation (DOT):
 - 1. 49 CFR 178 Regulations for Shipping Container Specifications

1.03 SUBMITTALS:

- A. Disposal Permit for Hazardous Waste: Submit a copy of the applicable EPA and state permits or licenses for transportation, treatment, storage, and disposal of hazardous waste by permitted facilities.
- B. Insurance: Provide evidence of reliable insurance coverage and assets to fully indemnify against long-term liabilities and/or catastrophic occurrences. Upon contract award, original Certificates of Insurance must be submitted to the District, indicating all required coverage's and endorsements as requested and required by District.

PART 2 - PRODUCTS

- 2.01 MATERIALS AND EQUIPMENT
 - A. Materials and equipment for patching and extending work: As specified in individual Sections.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verify field measurements and circuiting arrangements are as shown on Drawings.

- B. Verify that abandoned wiring and equipment serve only abandoned facilities.
- C. Demolition drawings are based on casual field observation and existing record documents. Report discrepancies to Engineer before disturbing existing installation.
- D. Beginning of demolition means installer accepts existing conditions.

3.02 PREPARATION

- A. Disconnect electrical systems shown for removal.
- B. Coordinate electrical outages with District. This work may involve off hours, weekends or holidays as required by the district.
- C. Provide temporary wiring and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or circuits use personnel experienced in such operations.
- D. Existing Electrical Service: Maintain existing system in service until building arrangements are made with the district and turned over to the Contractor for construction or new system is complete and ready for terminating at the equipment. Disable system only to make switchovers and connections. Obtain permission from District at least 14 days before partially or completely disabling system. Minimize outage duration. Make temporary connections to maintain service in areas adjacent to work area.

3.03 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK

- A. Demolish and extend existing electrical work under provisions of this Section and as indicated on the drawings.
- B. Remove, relocate, and extend existing installations to accommodate new construction.
- C. Remove abandoned wiring to source of supply unless otherwise indicated.
- D. Provide blank cover plate to removed distribution system.
- E. Disconnect and remove electrical devices, conduit, wiring, controls and equipment serving utilization equipment that has been removed/replaced with new.
- F. Repair adjacent construction and finishes damaged during demolition and extension work.
- G. Maintain access to existing electrical installations which remain active. Modify installation or provide access panel as appropriate.
- H. Extend existing installations using materials and methods as specified in Section 16050, "Materials and Methods."
- I. Maintain electrical continuity of existing electrical systems which may extend to outside of the renovation areas.

3.04 CLEANING AND REPAIR

- A. Clean and repair existing materials and equipment which remain or are to be reused.
- B. Panelboards: Clean exposed surfaces and check tightness of electrical connections. Replace damaged circuit breakers and provide closure plates for vacant positions. Provide typed circuit directory showing revised circuiting arrangement.

SECTION 16170 GROUNDING AND BONDING

PART 1 - GENERAL

- 1.01 SECTION INCLUDES
 - A. Equipment grounding conductors.
 - B. Bonding.
- 1.02 RELATED SECTIONS
 - A. Section 16010 Electrical General Requirements, applies to this section, with the additions and modifications specified herein.
 - B. Section 16050 Basic Materials and Methods
- 1.03 APPLICABLE PUBLICATIONS: The following publications form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
 - A. American National Standards Institute (ANSI) Publication:
 - 1. C2-2012 National Electrical Safety Code
 - B. Institute of Electrical and Electronic Engineers (IEEE) Publication:
 - 1. 142-1991 Recommended Practice for Grounding of Industrial and Commercial Power Systems
 - C. National Fire Protection Association (NFPA) Publication:
 - 1. 70-2011 National Electrical Code (NEC)
 - D. Underwriters Laboratories, Inc. (U.L.) Publication:
 - 1. 83-1983 Thermoplastic Insulated Wires
 - 2. 467-84 (R86) Grounding and Bonding

1.04 SUBMITTALS

- A. Submit under provisions of Section 16010.
- B. Product Data: Provide data for the following:
 - 1. Connections (all types)
 - 2. Ground Rods
- C. Test Reports: Provide reports for the following:
 - 1. Indicate overall resistance to ground and resistance of each exposed electrode.
- D. Manufacturer's Instructions: Include instructions for storage, handling, protection, examination, preparation and installation of exothermic connectors.
- 1.05 QUALITY ASSURANCE: In each standard referenced to herein, consider the advisory provisions to be mandatory, as though the word "shall" has been substituted for "should" wherever it appears. Interpret references in these standards to "authority having jurisdiction," or other words

of similar meaning, to mean Owner.

1.06 PROJECT RECORD DOCUMENTS

- A. Submit under provisions of section 16010.
- B. Accurately record actual locations of grounding electrodes/grounding to structural steel & metallic cold water pipes.
- C. Accurately record signal ground wire pathways, points of bonding, and point of connection to building grounds.
- D. Protector grounding shall indicate ground source, distance, and size of ground wire.

1.07 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing Products specified in this Section with minimum three years documented experience.

1.08 REGULATORY REQUIREMENTS

- A. Conform to requirements of NFPA 70 and ANSI C2.
- B. Furnish products listed and classified by Underwriters Laboratories, Inc. or testing firm acceptable to the Engineer as suitable for purpose specified and shown.

1.09 PERFORMANCE REQUIREMENTS

A. Grounding System Resistance: 5 ohms unless otherwise indicated.

PART 2 - PRODUCTS

2.01 MATERIALS AND EQUIPMENT: Materials and equipment shall conform to the respective specifications and standards and to the specifications herein. Electrical ratings shall be as indicated. Except where specifically indicated otherwise, provide only new materials having all legally required approvals and/or labels. Materials shall conform to the requirements of UL 467 where applicable.

2.02 CONDUCTOR, UL 83

- A. Ground and bonding conductors shall be green-insulated, soft-drawn stranded copper conductors, unless otherwise indicated, installed with sufficient slack to avoid breaking due to settlement and movement of conductors or attached points.
- B. System grounding conductors shall be minimum of 4/0 AWG copper, unless otherwise indicated, and shall be continuous with no joints or splices.

2.03 CONNECTORS AND TERMINALS

A. Wire Connectors and Terminals for use with Copper Conductors: UL 486A.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verify that final backfill and compaction has been completed before driving rod electrodes.

- 3.02 INSTALLATION: Provide grounding and bonding in accordance with the requirements of NFPA 70, IEEE 142, state and local codes, and to requirements specified herein. Codes shall be complied with as a minimum requirement with specifications prevailing when they are more stringent.
 - A. Bonding
 - Metallic conduits, wireways, metal enclosures of bus ways, cable boxes, electrical equipment housings, and all non-current carrying metallic parts shall be grounded. The metallic conduit system shall be used for equipment and enclosure grounding but not as a system ground conductor. Include a code sized green insulated copper grounding conductor in nonmetallic conduits and terminate each end on suitable lug, bus, or bushing.
 - 2. All conduit stub-ups shall be grounded and where multiple stub-ups are made within an equipment enclosure, such as a switchboard, they shall be equipped with grounding bushings and bonded together and to the enclosure and the enclosure ground bus.
 - 3. Bond together each metallic raceway, pipe, duct and other metal object entering the new buildings. Use 2 AWG bare copper conductors.
 - B. Equipment Ground
 - 1. All feeder runs and branch circuit wiring in nonmetallic conduit shall carry a green TW insulated code sized ground conductor per circuit properly connected for electrical ground continuity.
 - 2. Flexible conduit shall not be used as a ground path. Include code sized green conductor in all flex conduit.
 - 3. Provide bonding devices, fittings or jumpers at expansion fitting, isolation sections or wherever continuity of ground is broken.
- 3.03 FIELD TESTS: As an exception to requirements that may be stated elsewhere in the contract, the Inspector shall be given 5 working days notice prior to each test. The Contractor shall provide all test equipment and personnel and submit written copies of all test results.
 - A. Inspect grounding and bonding system conductors and connections for tightness and proper installation.
 - B. Provide personnel and test equipment to measure the resistance to ground of the grounding system before connecting equipment. Resistance to ground using the 3-point, fall-of-potential test method shall not exceed 5 ohms unless otherwise noted. Record resistance measurements, test point locations, ambient temperature and weather conditions at time of test.

SECTION 16195 ELECTRICAL IDENTIFICATION

PART1- GENERAL

1.01 SECTION INCLUDES

- A. Nameplates and labels.
- B. Wire and cable markers.
- C. Conduit markers.

1.02 APPLICABLE PUBLICATIONS:

The following publications form a part of this specification. The publications are referred to in the text by the basic designation only.

- A. American National Standards Institute, Inc. (ANSI) Publications:
 - 1. Latest Edition of National Electrical Safety Code with California Electrical Code (CEC) amendments.
 - 2. Z35.1-72 Accident Prevention Signs
- B. State of California Administrative Code:
 - 1. Title 8, Industrial Relations
- C. National Fire Protection Association (NFPA) Publication:
 - 1. 70-2011 National Electrical Code (NEC)

1.03 SUBMITTALS

- A. Submit under provisions of Section 16010.
- B. Product Data: Provide data for nameplates, labels, conduit and wire markers.

1.04 REGULATORY REQUIREMENTS

A. Conform to requirements of ANSI/NFPA 70.

PART 2 - PRODUCTS

2.01 NAMEPLATES

- A. Provide laminated plastic nameplates for all electrical equipment and devices including, but not limited to, the following:
 - 1. Enclosures for panel boards, equipment's disconnects and control panels for all HVAC equipments, pull boxes, cabinets and motors.
 - 2. Enclosures for all separately enclosed devices including but not limited to disconnect switches, circuit breakers, contactors, time switches, control stations and relays.
 - 3. Wall switches not within sight of outlet controlled.
 - 4. Special systems such as but not limited to warning and signal systems. Identification shall be at each equipment rack, terminal cabinet, control panel, annunciator, and pull box.
 - 5. Devices mounted within and part of an equipment including circuit breakers, switches,

- control devices, control transformers, relays, indication devices and instruments.
- 6. Panelboard I.D. and circuit number.
- B. Nameplate designations shall clearly state:
 - 1. Manufacturer's nameplate including equipment design rating of current, voltage, KVA, HP, bus bracing rating, or as applicable.
 - 2. Equipment nameplate designating system usage and purpose, system nominal voltage, equipment rating for KVA, amperes, HP and RPM as applicable.
 - 3. Contactors: Voltage, continuous current, horsepower or interrupting current, and whether "mechanically-held" or "electrically-held".
 - 4. Motors: Rated voltage, full load amperes, frequency, phases, speed, horsepower, code letter rating, time rating, type of winding, class and temperature.
 - 5. Controllers: Voltage, current, horsepower, and trip setting of motor running overcurrent protection.
 - 6. Receptacles and lighting switches (wiring devices): Panel designation and circuit number.
- C. Nameplates shall be melamine plastic, 0.125-inch thick, white with black center core. Surface shall be matte finish. Corners shall be square. Accurately align lettering into the black core. Minimum size of nameplates shall be 1 Inch by 2.5 inches. Lettering shall be normal block style unless otherwise noted.
- D. Letter Size:
 - 1. Use 0.25 inch letters for identifying individual equipment and loads.
 - 2. Use 0.50 inch for identifying grouped equipment and loads.

2.02 WIRE MARKERS

- A. Description: Tape or tubing type wire markers, 3M Scotch Code or approved equal.
- B. Legend:
 - 1. Power and Lighting Circuits: Branch circuit or feeder number indicated on drawings.
 - 2. Control Circuits: Control wire number indicated on schematic or interconnection diagrams on shop drawings.
- 2.03 ENGRAVED DEVICE PLATES: Provide per the requirements of Section 16050, "Basic Materials and Methods".

PART 3 - EXECUTION

3.01 PREPARATION

- A. Degrease and clean surfaces to receive nameplates and labels.
- B. Coordinate installation of nameplates, markers and warning signs with the sequence of painting.

3.02 NAMEPLATES

- A. Provide laminated plastic nameplates for all electrical equipment and devices including, but not limited to, the following:
 - 1. Enclosures for panel boards, distribution boards, HVAC equipment and controls, pull and junction boxes, cabinets and electronic circuit monitors.
 - 2. Enclosures for all separately enclosed devices including but not limited to disconnect

switches, circuit breakers, contactors, time switches, control stations and relays.

- 3. Special systems such as but not limited to telephone, warning and signal systems. Identification shall be at each equipment rack, terminal cabinet, control panel, annunciator, and pull box.
- 4. Devices mounted within and part of an equipment including circuit breakers, switches, control devices, control transformers, relays, indication devices and instruments.
- B. Mounting: Provide number, location, and letter designation of nameplates as indicated. Install nameplate parallel to equipment lines. Fasten nameplates to enclosures with a minimum of two sheet-metal screws or two rivets. Fasten nameplates to device plates with suitable adhesive. Secure nameplate to inside surface of door on panelboard that is recessed in finished locations.
- 3.03 WIRE MARKERS: Provide markers for each conductor at panelboard gutters, pull boxes, junction boxes, outlet boxes, and each load connection.

SECTION 16470 PANELBOARDS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

- A. Section Includes:
 - 1. Lighting and appliance branch-circuit panelboards.

1.03 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7
 - The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.04 SUBMITTALS

- A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 - 5. Include evidence of NRTL listing for series rating of installed devices.
 - 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 7. Include wiring diagrams for power, signal, and control wiring.
 - 8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
- C. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in California Building Code for Group D (Seismic Zone 4).
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- D. Field Quality-Control Reports:
 - 1. Test procedures used.

- 2. Test results that comply with requirements.
- 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- E. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.
 - 1. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals.

1.05 QUALITY ASSURANCE

- A. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NEMA PB 1.
- E. Comply with NFPA 70.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Handle and prepare panelboards for installation according to NECA 407 & NEMA PB 1.

1.07 PROJECT CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weather tight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding minus 22 deg F to plus 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet.
- C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Architect & Construction Manager no fewer than fourteen days in advance of proposed interruption of electric service.
 - 2. Do not proceed with interruption of electric service without Architect's & Construction Manager's written permission.
 - 3. Comply with NFPA 70E.

1.08 COORDINATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- 1.09 WARRANTY
 - A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One year from date of Substantial Completion.

PART 2 - PRODUCTS

2.01 GENERAL REQUIREMENTS FOR PANELBOARDS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in California Building Code Group D (Zone 4).
- B. Enclosures: Flush- and surface-mounted cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - c. Kitchen Areas: NEMA 250, Type 4X.
 - d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
 - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
 - 4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
 - 5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
 - 6. Finishes:
 - a. Panels and Trim: galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Same finish as panels and trim.
 - c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
 - 7. Directory Card: Inside panelboard door, mounted in metal frame with transparent protective cover.
- C. Incoming Mains Location: Top and bottom.
- D. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.

- 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
- 3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
- E. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Main and Neutral Lugs: Compression type.
 - 3. Ground Lugs and Bus-Configured Terminators: Compression type.
 - 4. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 5. Sub feed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 - 6. Gutter-Tap Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- F. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one or more main service disconnecting and overcurrent protective devices.
- G. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- H. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals.

2.02 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Square D; a brand of Schneider Electric. (District Standard)
- B. Panel boards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker.
- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
- 2.03 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Square D; a brand of Schneider Electric.
 - B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with series-connected rating to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
 - a. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.04 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Receive, inspect, handle, and store panelboards according to NECA 407& NEMA PB 1.1.
- B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.
- C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

- A. Install panelboards and accessories according to NECA 407 & NEMA PB 1.1.
 - 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
- B. Comply with mounting and anchoring requirements specified by structural engineer.
- C. Mount top of trim 90 inches above finished floor unless otherwise indicated.
- D. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- E. Install filler plates in unused spaces.
- F. Arrange conductors in gutters into groups and bundle and wrap with wire ties.
- G. Comply with NECA 1.

3.03 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 16 Section "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate District's final room designations. Obtain approval before installing. Use a typewriter to create directory; handwritten directories are not acceptable.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 16 Section "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 16 Section "Identification for Electrical Systems."

3.04 FIELD QUALITY CONTROL

- A. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- B. Tests and Inspections:

- 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 - c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- C. Panelboards will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken and observations after remedial action.

3.05 ADJUSTING

- A. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 - 1. Measure as directed during period of normal system loading.
 - 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 - 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.