Homework Helpers

Grade 5
Module 5
G5-M5-Lesson 1

1. The following solids are made up of 1 cm cubes. Find the total volume of each figure, and write it in the chart below.

 a.
 ![Image of solid a] I see there are 3 cubes on the bottom and 1 cube on top. Therefore, this solid has a total of 4 cubes.

 b.
 ![Image of solid b] I see there are 2 layers of cubes like layers of a cake (top and bottom). There are 10 cubes on the top, and there must be 10 cubes on the bottom. Therefore, this solid has a total of 20 cubes.

 Since Figure (a) is made of a total of 4 cubes, I can say that it has a volume of 4 cubic centimeters.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Volume</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4 cm³</td>
<td>I added 3 cubes and 1 cube. 3 + 1 = 4</td>
</tr>
<tr>
<td>b</td>
<td>20 cm³</td>
<td>I counted the top layer and then multiplied by 2.</td>
</tr>
</tbody>
</table>

2. Draw a figure with the given volume on the dot paper.

 a. 2 cubic units
 ![Diagram of 2 cubic units]
 I can connect the dots to make straight lines and draw figures that look like centimeter cubes.

 b. 4 cubic units
 ![Diagram of 4 cubic units]
3. Allison says that the figure below, made of 1 cm cubes, has a volume of 4 cubic centimeters.
 a. Explain her mistake.

 Allison is not counting the cube that is hidden. The cube that is on the second layer needs to be sitting on a hidden cube. The volume of this figure is 5 cubic centimeters.

 I see there are 4 cubes showing, but there is one hidden under the 1 cube on top.

 b. Imagine if Allison adds to the second layer so the cubes completely cover the first layer in the figure above. What would be the volume of the new structure? Explain how you know.

 The volume would be 8 cm³. I counted the first layer, and then multiplied by 2.

 \[4 \text{ cm}^3 \times 2 = 8 \text{ cm}^3\]

 Since Allison wants to build a second layer that is the same as the first layer, I can just multiply 4 cubes times 2.
G5-M5-Lesson 2

1. Shade the following figures on centimeter grid paper. Cut and fold each to make 3 open boxes, taping them so they hold their shapes. Pack each box with cubes. Write how many cubes fill the box.

 a. I can count the shaded area or the base. It would take 8 cubes to cover the base.

 Number of cubes: 16

 I can imagine folding all of the flaps up to form an open rectangular prism. There are 2 layers (top and bottom), so I can multiply $8 \times 2 = 16$.

 b. I can count the shaded area or the base. It is a 4 by 4 array, and $4 \times 4 = 16$.

 Number of cubes: 48

 I can imagine folding all of the flaps up to form an open rectangular prism. There are 3 layers, so I multiply $16 \times 3 = 48$.
2. How many centimeter cubes would fit in each box? Explain your answer using words and diagrams on the box. (The figures are not drawn to scale.)

a.

My prediction was accurate. It would take 16 cm cubes to fill the box.

Prediction: **16 centimeter cubes**

Actual: **16 centimeter cubes**

There are 2 layers like layers of a cake (top and bottom). There are 8 cubes in each layer. \(8 \times 2 = 16\)

There are 2 layers: top and bottom. Each layer has 8 cubes, and 8 cubes \(\times 2 = 16\) cubes.

b.

This box looks like it might hold twice as many cubes as the first one, so my prediction is 32 cubes.

Prediction: **32 centimeter cubes**

Actual: **30 centimeter cubes**

There are 3 layers: top, middle, and bottom. Each layer has 10 cubes, and 10 cubes \(\times 3 = 30\) cubes.
G5-M5-Lesson 3

1. Use the prisms to find the volume.
 - Build the rectangular prism pictured below to the left with your cubes, if necessary.
 - Decompose it into layers in three different ways, and show your thinking on the blank prisms.
 - Complete the missing information in the table.

<table>
<thead>
<tr>
<th>Number of Layers</th>
<th>Number of Cubes in Each Layer</th>
<th>Volume of the Prism</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>20 cubic cm</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>20 cubic cm</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>20 cubic cm</td>
</tr>
</tbody>
</table>

I can look at the rectangular prism above or the ones I cut below to help me record the information in the table.

I will cut it horizontally (top and bottom like layers in a cake). I have 2 layers, and there are 10 cubes in each layer.

I will cut it vertically (left to right like slices of bread). I have 5 layers, and there are 4 cubes in each layer.

I will cut it into 2 layers, front and back. There are 10 cubes in each layer.
I can visualize a prism that is 5 in × 5 in × 1 in. When looking at the prism from the top, it would look like a square since the length and the width are equal. The prism is also just one inch tall, so it looks like the bottom layer of a cake.

2. Joseph makes a rectangular prism 5 inches by 5 inches by 1 inch. He then decides to create layers equal to his first one. Fill in the chart below, and explain how you know the volume of each new prism.

To find the volume in 3 layers, I will multiply 3 times 25 in\(^3\). The answer is 75 in\(^3\).

<table>
<thead>
<tr>
<th>Number of Layers</th>
<th>Volume</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| 3 | 75 in\(^3\) | 1 layer: 25 in\(^3\)
3 layers: 3 × 25 in\(^3\) = 75 in\(^3\) |
| 5 | 125 in\(^3\) | 1 layer: 25 in\(^3\)
5 layers: 5 × 25 in\(^3\) = 125 in\(^3\) |

To find the volume of 5 layers, I will multiply 5 times 25 in\(^3\). The answer is 125 in\(^3\).
G5-M5-Lesson 4

1. Each rectangular prism is built from centimeter cubes. State the dimensions, and find the volume.

 a. The height of the rectangular prism is 3 cm.
 The width of the rectangular prism is 2 cm.
 The length of the rectangular prism is 5 cm.

 Length: 5 cm
 Width: 2 cm
 Height: 3 cm
 Volume: 30 cm³

 Volume is equal to length times width times height. I can multiply 5 cm by 2 cm by 3 cm, which is 30 cm³.

 b. The height of the rectangular prism is 3 cm.
 The width of the rectangular prism is 2 cm.
 The length of the rectangular prism is 4 cm.

 Length: 4 cm
 Width: 2 cm
 Height: 3 cm
 Volume: 24 cm³

 Volume = l × w × h. I can multiply 4 cm by 2 cm by 3 cm, which is 24 cm³.

2. Write a multiplication sentence that you could use to calculate the volume for each rectangular prism in Problem 1. Include the units in your sentences.

 a. \[5 \text{ cm} \times 2 \text{ cm} \times 3 \text{ cm} = 30 \text{ cm}^3\]

 b. \[4 \text{ cm} \times 2 \text{ cm} \times 3 \text{ cm} = 24 \text{ cm}^3\]
3. Calculate the volume of each rectangular prism. Include the units in your number sentences.

The height of the rectangular prism is 7 meters.

The width of the rectangular prism is 3 meters.

The length of the rectangular prism is 4 meters.

\[V = 4 \text{ m} \times 3 \text{ m} \times 7 \text{ m} = 84 \text{ m}^3 \]

I multiply the 3 dimensions together to find the volume.

4. Meilin is constructing a box in the shape of a rectangular prism to store her small toys. It has a length of 10 inches, a width of 5 inches, and a height of 7 inches. What is the volume of the box?

Volume = length × width × height

\[V = 10 \text{ in} \times 5 \text{ in} \times 7 \text{ in} = 350 \text{ in}^3 \]

The volume of the box is 350 cubic inches.
G5-M5-Lesson 5

1. Kevin filled a container with 40 centimeter cubes. Shade the beaker to show how much water the container will hold. Explain how you know.

 It will hold 40 milliliters of water. I know that 1 cm3 = 1 mL.
 Therefore, 40 cm3 is equal to 40 mL.

 I know 1 cm3 = 1 mL, so 40 cm3 = 40 mL.
 I will shade the water level to 40 milliliters.

2. A beaker contains 200 mL of water. Joe wants to pour the water into a container that will hold the water. Which of the containers pictured below could he use? Explain your choices.

 I will find the volume of container A. It is 320 cm3.

 $V_A = 20 \text{ cm} \times 8 \text{ cm} \times 2 \text{ cm}$

 $= 320 \text{ cm}^3$

 Since 320 cm3 = 320 mL, this container can hold 200 mL of water.

 $V_B = 7 \text{ cm} \times 6 \text{ cm} \times 3 \text{ cm}$

 $= 126 \text{ cm}^3$

 Since 126 cm3 = 126 mL, this container cannot hold 200 mL of water.
I can find the volume of container C by multiplying the area of the front face by the width.

\[V_C = 20 \text{ cm}^2 \times 10 \text{ cm} = 200 \text{ cm}^3 \]

Since 200 cm\(^3\) = 200 mL, this container can hold 200 mL of water.

I can find the volume of container D by multiplying the area of the top face by the height.

\[V_D = 75 \text{ cm}^2 \times 2 \text{ cm} = 150 \text{ cm}^3 \]

Since 150 cm\(^3\) = 150 mL, this container will not be able to hold 200 mL of water.

Joe will be able to use container A because the volume is 320 cm\(^3\). He will also be able to use container C because the volume is 200 cm\(^3\). He will not be able to use containers B and D because they are too small.
G5-M5-Lesson 6

1. Find the total volume of the figures, and record your solution strategy.
 a.

 Since the top figure is sitting directly on top of the bottom figure, without any gaps or overlaps, the width of both figures is 4 in.

 The top figure has a length of 5 in and a height of 3 in.

 I can find the volume of the top figure. Volume = \(5 \text{ in} \times 4 \text{ in} \times 3 \text{ in} = 60 \text{ in}^3\)

 I can find the volume of the bottom figure. Volume = \(10 \text{ in} \times 4 \text{ in} \times 7 \text{ in} = 280 \text{ in}^3\)

 I will add both figures' volumes together. \(60 \text{ in}^3 + 280 \text{ in}^3 = 340 \text{ in}^3\)

 Volume: \(340 \text{ in}^3\)

 Solution Strategy:

 *I found the top figure's volume, 60 in\(^3\), and the bottom figure's volume, 280 in\(^3\).
 Then, I added both volumes together to get a total of 340 in\(^3\).*
b.

All three figures have the same width of 2 m.

I can find the volume for the top figure.
Volume = $4 \times 2 \times 3 = 24 \text{ m}^3$

Volume = $9 \times 2 \times 3 = 54 \text{ m}^3$

Volume = $2 \times 2 \times 5 = 20 \text{ m}^3$

I add all three figures' volumes together.
$24 \text{ m}^3 + 54 \text{ m}^3 + 20 \text{ m}^3 = 98 \text{ m}^3$

Volume: 98 m^3

Solution Strategy:

I found the top figure's volume, 24 m3, the middle figure's volume, 54 m3, and the bottom figure's volume, 20 m3. Then, I added all three volumes together to get a total of 98 m3.

2. A fish tank has a base area of 65 cm2 and is filled with water to a depth of 21 cm. If the height of the tank is 30 cm, how much more water will be needed to fill the tank to the brim?

I can find the height of the tank that is without water. It is 9 cm.

I can find the volume of the empty tank by multiplying the area of the base times the height, 9 cm.

585 mL of water will be needed to fill the tank to the brim.
G5-M5-Lesson 7

Edwin builds rectangular planters.

1. Edwin’s first planter is 6 feet long and 2 feet wide. The container is filled with soil to a height of 3 feet in the planter. What is the volume of soil in the planter? Explain your work using a diagram.

 Volume = length \times width \times height
 \[V = 6 \text{ ft} \times 2 \text{ ft} \times 3 \text{ ft} = 36 \text{ ft}^3 \]

 The volume of soil in the planter is 36 cubic feet.

 I draw a rectangular prism and label all the given information.

 I can multiply the length, width, and height of the soil to find the volume of the soil in the planter.

 In order to have a volume of 50 cubic feet, I have to think of different factors that I can multiply to get 50. Since volume is three-dimensional, I will have to think of 3 factors.

2. Edwin wants to grow some flowers in two planters. He wants each planter to have a volume of 50 cubic feet, but he wants them to have different dimensions. Show two different ways Edwin can make these planters, and draw diagrams with the planters’ measurements on them.

 Planter A

 Volume = l \times w \times h
 \[V = 5 \text{ ft} \times 5 \text{ ft} \times 2 \text{ ft} = 50 \text{ ft}^3 \]

 I draw a rectangular prism and label it as 5 feet by 5 feet by 2 feet.

 I can verify my answer by finding the volume for Planter A. The answer is 50 cubic feet.

 I need to think of 3 factors that give a product of 50.
Planter B

I will draw a rectangular prism and label it as 10 feet by 5 feet by 1 foot.

I need the 3 different factors for Planter B.

\[10 \times 5 \times 1 = 50\]

Volume = \(l \times w \times h\)

\[V = 10\text{ ft} \times 5\text{ ft} \times 1\text{ ft} = 50\text{ ft}^3\]

In order to have a volume of 30 cubic feet, I have to think of three factors that give a product of 30.

3. Edwin wants to make one planter that extends from the ground to just below his back window. The window starts 3 feet off the ground. If he wants the planter to hold 30 cubic feet of soil, name one way he could build the planter so it is not taller than 3 feet. Explain how you know.

The volume is 30 cubic feet, and one of the dimensions must not be more than 3 feet. So, I will keep the height as 3 feet.

\[30\text{ ft}^3 \div 3\text{ ft} = 10\text{ ft}^2\]

I already know the volume is 30 ft\(^3\), and the height is 3 ft, so I'll divide the volume by the height to find the area of the base.

\[10\text{ ft}^2 = 5\text{ ft} \times 2\text{ ft}\]

Length = 5 ft
Width = 2 ft
Height = 3 ft

Now that I know the area of the base of the planter is 10 ft\(^2\), I need to think of two factors that have a product of 10. 5 and 2 will work!

Since Edwin wants to build a planter with a height of 3 ft and a volume of 30 ft\(^3\), the base of the planter should have an area of 10 ft\(^2\). I drew a planter with a length of 5 ft, width of 2 ft, and height of 3 ft.
G5-M5-Lesson 8

1. I have a prism with the dimensions of 8 in by 12 in by 20 in. Calculate the volume of the prism, and then give the dimensions of two different prisms that each have $\frac{1}{4}$ of the volume.

To find $\frac{1}{4}$ of the volume, I can use the original prism’s volume divided by 4. $\frac{1}{4}$ of 1,920 in3 is equal to 480 in3.

<table>
<thead>
<tr>
<th>Original Prism</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 in.</td>
<td>12 in.</td>
<td>20 in.</td>
<td>1,920 in3</td>
</tr>
</tbody>
</table>

I multiply the three dimensions to find the original volume. $8 \text{ in} \times 12 \text{ in} \times 20 \text{ in} = 1,920 \text{ in}^3$

<table>
<thead>
<tr>
<th>Prism 1</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 in.</td>
<td>12 in.</td>
<td>20 in.</td>
<td>480 in3</td>
</tr>
</tbody>
</table>

In order to create a volume that is $\frac{1}{4}$ of 1,920, I can change one of the dimensions and keep the others the same. $\frac{1}{4}$ of 8 in = 2 in

$2 \text{ in} \times 12 \text{ in} \times 20 \text{ in} = 480 \text{ in}^3$

<table>
<thead>
<tr>
<th>Prism 2</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 in.</td>
<td>6 in.</td>
<td>10 in.</td>
<td>480 in3</td>
</tr>
</tbody>
</table>

Another way I can create a volume that is $\frac{1}{4}$ of 1,920 is to change two of the dimensions and keep the other the same. $\frac{1}{2}$ of 12 in = 6 in $\frac{1}{2}$ of 20 in = 10 in

Lesson 8: Apply concepts and formulas of volume to design a sculpture using rectangular prisms within given parameters.
Kayla’s bedroom has a volume of 800 ft\(^3\).
\[10 \text{ ft} \times 8 \text{ ft} \times 10 \text{ ft} = 800 \text{ ft}^3\]

One way to double the volume is to double one dimension and keep the others the same.

2. Kayla’s bedroom has the dimensions of 10 ft by 8 ft by 10 ft. Her den has the same height (10 ft) but double the volume. Give two sets of the possible dimensions of the den and the volume of the den.

Length: 10 ft \times 2 = 20 ft

Width: 8 ft

Height: 10 ft

Volume = 20 ft \times 8 ft \times 10 ft = 1,600 \text{ ft}^3

I can double the length, 10 ft \times 2 = 20 ft, and keep both the width and the height the same.

1,600 \text{ ft}^3\ is double the original volume of 800 \text{ ft}^3.

Length: 10 ft \times 4 = 40 ft

Width: 8 ft \times \frac{1}{2} = 4 ft

Height: 10 ft

Volume = 40 ft \times 4 ft \times 10 ft = 1,600 \text{ ft}^3

In order to double the volume, I can also quadruple the length and cut the width in half.

1,600 \text{ ft}^3\ is double the original volume of 800 \text{ ft}^3.
Find three rectangular prisms around your house. Describe the item you are measuring (e.g., cereal box, tissue box), and then measure each dimension to the nearest whole inch and calculate the volume.

a. Rectangular Prism A
 Item: Cereal box
 Height: 12 inches
 Length: 8 inches
 Width: 3 inches
 Volume: 288 cubic inches

 I will measure a cereal box, and then multiply the three dimensions to find the volume.

 Volume = length × width × height
 = 8 in × 3 in × 12 in
 = 288 in³

b. Rectangular Prism B
 Item: Tissue box
 Height: 3 inches
 Length: 9 inches
 Width: 5 inches
 Volume: 135 cubic inches

 I will measure a tissue box, and then multiply the three dimensions to find the volume.

 Volume = length × width × height
 = 9 in × 5 in × 3 in
 = 45 in² × 3 in
 = 135 in³

 The volume of the tissue box is 135 cubic inches.
1. Alex tiled some rectangles using square units. Sketch the rectangles if necessary. Fill in the missing information, and then confirm the area by multiplying.

Rectangle A:
- I look at Rectangle A's dimensions, 4 units by $2\frac{1}{2}$ units.
- I can draw a length of 4 units.
- I can draw a rectangle and show a width of $2\frac{1}{2}$ units.
- I can count the halves and see that there are 4 half square units, which is the same as 2 square units. I can multiply too. $4 \text{ units} \times \frac{1}{2} \text{ unit} = 2 \text{ square units}$
- I can count the squares and see that there are 8 whole square units. I can multiply too. $4 \text{ units} \times 2 \text{ units} = 8 \text{ square units}$

Area:
- $2 \text{ units} \times \frac{1}{2} \text{ unit} = 2 \text{ square units}$
- $8 \text{ square units} + 2 \text{ square units} = 10 \text{ square units}$
- $4 \text{ units} \times 2 \frac{1}{2} \text{ units} = 8 + \frac{4}{2} \text{ square units} = 8 + 2 = 10$

The area of Rectangle A is 10 square units.
2. Juanita made a mosaic from different colored rectangular tiles. Two blue tiles measured $2\frac{1}{2}$ inches \times 3 inches. Five white tiles measured 3 inches \times $2\frac{1}{4}$ inches. What is the area of the whole mosaic in square inches?

I can find the area of one blue tile.

$$2\frac{1}{2} \text{ in} \times 3 \text{ in}$$

$$(2 \times 3) + \left(\frac{1}{2} \times 3\right)$$

$$= 6 + \frac{3}{2}$$

$$= 6 + 1\frac{1}{2}$$

$$= 7\frac{1}{2}$$

*The area of 1 blue tile is $7\frac{1}{2}$ in2.***

To find the area of the two blue tiles, I can multiply the area by 2.

$$1 \text{ unit} = 7\frac{1}{2} \text{ in}^2$$

$$2 \text{ units} = 2 \times 7\frac{1}{2} \text{ in}^2$$

$$= (2 \times 7) + \left(2 \times \frac{1}{2}\right)$$

$$= 14 + 2$$

$$= 14 + 1$$

$$= 15$$

*The area of 2 blue tiles is 15 in2.***

I can find the area of one white tile.

$$3 \text{ in} \times 2\frac{1}{4} \text{ in}$$

$$(3 \times 2) + \left(3 \times \frac{1}{4}\right)$$

$$= 6 + \frac{3}{4}$$

$$= 6\frac{3}{4}$$

*The area of 1 white tile is $6\frac{3}{4}$ in2.***

To find the area of five white tiles, I can multiply the area by 5.

$$1 \text{ unit} = 6\frac{3}{4} \text{ in}^2$$

$$5 \text{ units} = 5 \times 6\frac{3}{4} \text{ in}^2$$

$$= (5 \times 6) + \left(5 \times \frac{3}{4}\right)$$

$$= 30 + \frac{15}{4}$$

$$= 30 + 3\frac{3}{4}$$

$$= 33\frac{3}{4}$$

*The area of 5 white tiles is $33\frac{3}{4}$ in2.***

$$33\frac{3}{4} \text{ in}^2 + 15 \text{ in}^2 = 48\frac{3}{4} \text{ in}^2$$

I can add the two areas together to find the area of the entire mosaic.

The area of the whole mosaic is $48\frac{3}{4}$ square inches.
G5-M5-Lesson 11

1. Cindy tiled the following rectangles using square units. Sketch the rectangles, and find the areas. Then, confirm the area by multiplying.

 a. **Rectangle A:**

 Rectangle A is 3\(\frac{1}{2}\) units long by 2\(\frac{1}{2}\) units wide.

 Area = \(\frac{8}{4}\) units\(^2\)

 \[3\frac{1}{2} \times 2\frac{1}{2}\]

 \[= (2 \times 3) + \left(2 \times \frac{1}{2}\right) + \left(\frac{1}{2} \times 3\right) + \left(\frac{1}{2} \times \frac{1}{2}\right)\]

 \[= 6 + \frac{2}{2} + \frac{3}{2} + \frac{1}{4}\]

 \[= 6 + 1 + \frac{1}{2} + \frac{1}{4}\]

 \[= 6 + 1 + \frac{2}{4} + \frac{1}{4}\]

 \[= \frac{8}{3}\]

 I rename \(1\frac{1}{2}\) as \(\frac{3}{2}\) so I can add.

 The area of Rectangle A is \(\frac{8}{3}\) square units.
b. Rectangle B:

Rectangle B is

3 \(\frac{1}{3} \) units long by \(\frac{3}{4} \) unit wide.

Area = \(\frac{2}{2} \) units\(^2\)

I can multiply to find the area.

\[
3 \frac{1}{3} \times \frac{3}{4} = (\frac{3}{4} \times 3) + (\frac{3}{4} \times \frac{1}{3})
\]
\[
= \frac{9}{4} + \frac{3}{12} = \frac{9}{4} + \frac{1}{4}
\]
\[
= \frac{2}{2} + \frac{1}{4} = \frac{5}{4}
\]
\[
= 2 \frac{1}{2}
\]

The area of Rectangle B is 2 \(\frac{1}{2} \) square units.
2. A square has a perimeter of 36 inches. What is the area of the square?

All four sides are equal in a square.

Area = ?

Since the perimeter of the square is 36 inches, I will use 36 inches divided by 4 to find the length of one side. 36 inches ÷ 4 = 9 inches

Perimeter = 36 in
36 in ÷ 4 = 9 in

Area is equal to length times width. I will multiply 9 inches times 9 inches to find an area of 81 square inches.

Area = length × width
= 9 in × 9 in
= 81 in²

The area of the square is 81 in².
G5-M5-Lesson 12

1. Measure the rectangle to the nearest $\frac{1}{4}$ inch with your ruler, and label the dimensions. Use the area model to find the area.

\[\text{I can use an inch ruler to measure this figure. The length is } 2\frac{1}{4} \text{ inches and the width is 2 inches.}\]

\[\text{I draw a vertical line partitioning the rectangle into whole inches and a fraction of an inch.}\]

\[\text{I solve by using the area model.}\]
\[2 \text{ in} \times 2 \text{ in} = 4 \text{ in}^2\]
\[2 \text{ in} \times \frac{1}{4} \text{ in} = \frac{2}{4} \text{ in}^2\]

\[4 \text{ in}^2 + \frac{2}{4} \text{ in}^2 = 4 \text{ in}^2 + \frac{1}{2} \text{ in}^2 = 4\frac{1}{2} \text{ in}^2\]

\[\text{Area } = 4\frac{1}{2} \text{ in}^2\]

Lesson 12: Measure to find the area of rectangles with fractional side lengths.
2. Find the area of rectangle with the following dimensions. Explain your thinking using the area model.

\[\frac{3}{4} \text{ ft} \times \frac{3}{4} \text{ ft} \]

The length is \(2 \frac{3}{4}\) feet, and the width is \(1 \frac{3}{4}\) feet.

I partition my area model into whole foot parts and fraction of a foot parts.

I multiply to find the four partial areas.

\[
\begin{align*}
1 \times 2 &= 2 \text{ ft}^2 \\
1 \times \frac{3}{4} &= \frac{3}{4} \text{ ft}^2 \\
\frac{3}{4} \times 2 &= \frac{6}{4} \text{ ft}^2 \\
\frac{3}{4} \times \frac{3}{4} &= \frac{9}{16} \text{ ft}^2
\end{align*}
\]

Area = \(4 \frac{13}{16} \text{ ft}^2\)

3. Zikera is putting carpet in her house. She wants to carpet her living room, which measures \(12 \text{ ft} \times 10 \frac{1}{2} \text{ ft}\). She also wants to carpet her bedroom, which is \(10 \text{ ft} \times 7 \frac{1}{2} \text{ ft}\). How many square feet of carpet will she need to cover both rooms?

Area of the living room:

\[
12 \times 10 \frac{1}{2}
\]

\[
(12 \times 10) + (12 \times \frac{1}{2})
\]

\[
= 120 + 6
\]

\[
= 126
\]

Area = 126 ft\(^2\)

Area of the bedroom:

\[
10 \times 7 \frac{1}{2}
\]

\[
10 \times \frac{15}{2}
\]

\[
= \frac{150}{2}
\]

\[
= 75
\]

Area = 75 ft\(^2\)

126 ft\(^2\) + 75 ft\(^2\) = 201 ft\(^2\)

She will need 201 square feet of carpet to cover both rooms.

Lesson 12: Measure to find the area of rectangles with fractional side lengths.
G5-M5-Lesson 13

1. Find the area of the following rectangles. Draw an area model if it helps you.

 a. \(\frac{35}{4} \text{ ft} \times 2\frac{3}{7} \text{ ft} \)

 I can use multiplication to find the area.

 \[
 \frac{35}{4} \times 2\frac{3}{7} = \frac{35}{4} \times \frac{17}{7} = \frac{35 \times 17}{4 \times 7} = \frac{5 \times 17}{4 \times 1} = \frac{85}{4} = 21\frac{1}{4} \text{ ft}^2
 \]

 Area = 21\frac{1}{4} \text{ ft}^2

 I can rename 2\frac{3}{7} as a fraction greater than one, \(\frac{17}{7} \).

 35 and 7 have a common factor of 7. 35 ÷ 7 = 5, and 7 ÷ 7 = 1. The new numerator is 5 × 17, and the denominator is 4 × 1.

 85 divided by 4 is equal to 21\frac{1}{4}.

 b. \(4\frac{2}{3} \text{ m} \times 2\frac{3}{5} \text{ m} \)

 I use the area model to solve this problem.

 I can multiply to find all four partial products.

 \[
 \begin{align*}
 2 \text{ m} \times 4 \text{ m} & = 8 \text{ m}^2 \\
 2 \text{ m} \times \frac{2}{3} \text{ m} & = \frac{4}{3} \text{ m}^2 = 1\frac{1}{3} \text{ m}^2 \\
 \frac{3}{5} \text{ m} \times 4 \text{ m} & = \frac{12}{5} \text{ m}^2 = 2\frac{2}{5} \text{ m}^2 \\
 \frac{3}{5} \text{ m} \times \frac{2}{3} \text{ m} & = \frac{6}{15} \text{ m}^2
 \end{align*}
 \]

 I can add all four partial products to find the area.

 \[
 8 \text{ m}^2 + 1\frac{1}{3} \text{ m}^2 + 2\frac{2}{5} \text{ m}^2 + \frac{6}{15} \text{ m}^2 = 11 \text{ m}^2 + \frac{1}{3} \text{ m}^2 + \frac{2}{5} \text{ m}^2 + \frac{6}{15} \text{ m}^2
 \]

 \[
 = 11 \text{ m}^2 + \frac{5}{15} \text{ m}^2 + \frac{6}{15} \text{ m}^2 + \frac{6}{15} \text{ m}^2
 \]

 \[
 = 11 \text{ m}^2 + \frac{17}{15} \text{ m}^2
 \]

 \[
 = 11 \text{ m}^2 + 1\frac{2}{15} \text{ m}^2
 \]

 \[
 = 12\frac{2}{15} \text{ m}^2
 \]

 Area = 12\frac{2}{15} \text{ m}^2
2. Meigan is cutting rectangles out of fabric to make a quilt. If the rectangles are $4\frac{3}{4}$ inches long and $2\frac{1}{2}$ inches wide, what is the area of five such rectangles?

I can find the area of 1 rectangle, and then multiply by 5 to find the total area of 5 rectangles.

I draw an area model to help solve for the area of 1 rectangle.

I can add up the four partial products. The area of 1 rectangle is $11\frac{7}{8}$ square inches.

\[
1 \text{ unit} = 11\frac{7}{8} \text{ in}^2
\]

\[
5 \text{ units} = 5 \times 11\frac{7}{8} \text{ in}^2
\]

\[
(5 \times 11) + \left(5 \times \frac{7}{8}\right)
\]

\[
= 55 + \frac{35}{8}
\]

\[
= 55 + 4\frac{3}{8}
\]

\[
= 59\frac{3}{8}
\]

The area of five rectangles is $59\frac{3}{8}$ square inches.
G5-M5-Lesson 14

1. Sam decided to paint a wall with two windows. The gray areas below show where the windows are. The windows will not be painted. Both windows are $2 \frac{1}{2}$ ft by $4 \frac{1}{2}$ ft rectangles. Find the area the paint needs to cover.

Area of 1 window:
\[
2 \frac{1}{2} \text{ ft} \times 4 \frac{1}{2} \text{ ft} = \frac{5}{2} \times \frac{9}{2} = \frac{45}{4} = 11 \frac{1}{4} \text{ ft}^2
\]

Area = $11 \frac{1}{4} \text{ ft}^2$

Area of the wall:
\[
13 \frac{1}{2} \text{ ft} \times 9 \text{ ft} = (13 \times 9) + (\frac{1}{2} \times 9) = 117 + \frac{9}{2} = 117 + 4 \frac{1}{2} = 121 \frac{1}{2} \text{ ft}^2
\]

Area = $121 \frac{1}{2} \text{ ft}^2$

Area of 2 windows:
\[
1 \text{ unit} = 11 \frac{1}{4} \text{ ft}^2
\]
\[
2 \text{ units} = 2 \times 11 \frac{1}{4} \text{ ft}^2 = (2 \times 11) + (2 \times \frac{1}{4}) = 22 + \frac{2}{4} = 22 \frac{1}{2} \text{ ft}^2
\]

Area = $22 \frac{1}{2} \text{ ft}^2$

The area of 1 window is $11 \frac{1}{4} \text{ ft}^2$.

I can subtract the area of the two windows from the area of the wall to find the area that the paint needs to cover.

\[
121 \frac{1}{2} \text{ ft}^2 - 22 \frac{1}{2} \text{ ft}^2 = 99 \text{ ft}^2
\]

The paint needs to cover 99 square feet.
2. Mason uses square tiles, some of which he cuts in half, to make the figure below. If each square tile has a side length of $3\frac{1}{2}$ inches, what is the total area of the figure?

Total tiles:
7 whole tiles + 6 half tiles = 10 tiles

Area of 1 tile:

\[
\begin{align*}
\frac{3}{2} \text{ in} \times \frac{3}{2} \text{ in} &= \frac{49}{4} \\
&= 12\frac{1}{4} \text{ in}^2
\end{align*}
\]

Area = $12\frac{1}{4}$ in2

Area of 10 tiles:

To find the area of 10 tiles, I can multiply the area of 1 tile by 10.

1 unit = $12\frac{1}{4}$ in2

10 units = $10 \times 12\frac{1}{4}$ in2

\[
\begin{align*}
(10 \times 12) + \left(10 \times \frac{1}{4}\right) &= 120 + \frac{10}{4} \\
&= 120 + 2\frac{1}{4} \\
&= 122\frac{1}{2}
\end{align*}
\]

The total area of the figure is $122\frac{1}{2}$ square inches.
G5-M5-Lesson 15

1. The length of a flowerbed is 3 times as long as its width. If the width is $\frac{4}{5}$ meter, what is the area of the flowerbed?

Since the length is 3 times as long as the width, I draw a tape diagram with the width of 1 unit and the length of 3 units.

Since $\frac{4}{5}$ m $	imes$ 3 = $\frac{12}{5}$ m

I find the length of the flowerbed by multiplying by 3.

Area = length $	imes$ width

$= \frac{12}{5}$ m $\times \frac{4}{5}$ m

$= \frac{48}{25}$ m2

$= 1 \frac{23}{25}$ m2

I find the area of the flowerbed by multiplying the length times the width.

The flowerbed’s area is $1 \frac{23}{25}$ square meters.

Lesson 15: Solve real world problems involving area of figures with fractional side lengths using visual models and/or equations.
2. Mrs. Tran grows herbs in square plots. Her rosemary plot measures \(\frac{5}{6} \) yd on each side.

a. Find the total area of the rosemary plot.

\[
\text{Area} = \text{length} \times \text{width} \\
= \frac{5}{6} \text{ yd} \times \frac{5}{6} \text{ yd} \\
= \frac{25}{36} \text{ yd}^2
\]

The total area of the rosemary plot is \(\frac{25}{36} \) square yards.

b. Mrs. Tran puts a fence around the rosemary. If the fence is 2 ft from the edge of the garden on each side, what is the perimeter of the fence?

\[
\frac{5}{6} \text{ yd} = \frac{5}{6} \times 1 \text{ yd} \\
= \frac{5}{6} \times 3 \text{ ft} \\
= \frac{15}{6} \text{ ft} \\
= 2 \frac{3}{6} \text{ ft} \\
= 2 \frac{1}{2} \text{ ft}
\]

One side of the fence:

\[
2 \frac{1}{2} \text{ ft} + 4 \text{ ft} = 6 \frac{1}{2} \text{ ft}
\]

Perimeter of the fence:

\[
6 \frac{1}{2} \text{ ft} \times 4 \\
= (6 \text{ ft} \times 4) + (\frac{1}{2} \text{ ft} \times 4) \\
= 24 \text{ ft} + \frac{4}{2} \text{ ft} \\
= 24 \text{ ft} + 2 \text{ ft} \\
= 26 \text{ ft}
\]

The perimeter of the fence is 26 feet.
G5-M5-Lesson 16

1. What are polygons with four sides called?
 * Quadrilaterals
 * I know that the prefix "quad" means "four."

2. What are the attributes of trapezoids?
 * They are quadrilaterals.
 * I know that some trapezoids with more specific attributes are commonly known as parallelograms, rectangles, squares, rhombuses, and kites. But ALL trapezoids are quadrilaterals with at least one set of opposite sides parallel.
 * They have at least one set of opposite sides parallel.
 * I know that some trapezoids have only right angles (90°), some have two acute angles (less than 90°) and two obtuse angles (more than 90° but less than 180°), and some have a combination of right, acute, and obtuse angles.

3. Use a straightedge and the grid paper to draw
 a. A trapezoid with 2 sides of equal length.
 ![Trapezoid with two sides of equal length](image)
 Since this trapezoid has 2 sides of equal length (FG and HI), it is called an isosceles trapezoid.

 b. A trapezoid with no sides of equal length.
 ![Trapezoid with no sides of equal length](image)
 \(\angle J \) and \(\angle M \) are right angles and measure 90°.
 In this trapezoid, none of the sides are equal in length.

Lesson 16: Draw trapezoids to clarify their attributes, and define trapezoids based.
G5-M5-Lesson 17

1. Circle all of the words that could be used to name the figure below.

- parallelogram
- triangle
- quadrilateral
- trapezoid
- square

This figure is a parallelogram because it's a quadrilateral with both pairs of opposite sides parallel.

This figure is a trapezoid because it's a quadrilateral with at least one pair of opposite sides parallel.

2. $HIJK$ is a parallelogram not drawn to scale.
 a. Using what you know about parallelograms, give the lengths of KJ and HK.

 $KJ = \frac{4\ 1}{4}\ \text{in}$
 $HK = 2\ \text{in}$

 I know that opposite sides of a parallelogram are equal in length. $HI = KJ$.

 b. $\angle HKJ = 99^\circ$. Use what you know about angles in a parallelogram to find the measure of the other angles.

 I know that opposite angles of a parallelograms are equal in measure.

 $\angle HKI = 81^\circ$ $\angle JIH = 99^\circ$ $\angle KJI = 81^\circ$

 I know that angles that are next to one another, or adjacent, add up to 180°. $180^\circ - 99^\circ = 81^\circ$
3. \(PQRS \) is a parallelogram not drawn to scale. \(PR = 10 \text{ mm} \) and \(MS = 4.5 \text{ mm} \). Give the lengths of the following segments:

\[
PM = 5 \text{ mm} \quad QS = 9 \text{ mm}
\]

I know that the diagonals of a parallelogram bisect, or cut one another in two equal parts. So the length of \(PM \) is equal to half the length of \(PR \).
G5-M5-Lesson 18

1. What is the definition of a rhombus? Draw an example.

 A rhombus is a quadrilateral (a shape with 4 sides) with all sides equal in length.

 One example of a rhombus looks like this:

 ![Rhombus Diagram]

 My rhombus looks like a diamond, but I could have drawn it other ways, too. As long as it is a quadrilateral with 4 sides of equal length, it is a rhombus.

2. What is the definition of a rectangle? Draw an example.

 A rectangle is a quadrilateral with four right (90 degree) angles.

 ![Rectangle Diagram]

 My rectangle has 2 long sides and 2 short sides, but I could have drawn it other ways, too. As long as it is a quadrilateral with 4 right angles, it is a rectangle.

 The boxes in the corners of my rectangle show that all the angles are 90 degrees.
G5-M5-Lesson 19

1. What are the attributes of a square? Draw an example.

 The attributes of a square are

 - Four sides that are equal in length (same as a rhombus)
 - Four right angles (same as a rectangle)
 - A square is a type of rhombus and a type of rectangle!

 ![Square Diagram]

 This is a square.
 It is also a rhombus because it has 4 sides of equal length.
 It is also a rectangle because it has 4 right angles.

2. What are the attributes of a kite? Draw an example.

 The attributes of a kite are

 - A quadrilateral in which 2 consecutive (next to each other) sides are equal in length.
 - The other 2 side lengths are equal to one another as well.

 ![Kite Diagram]

 The 2 sides on “top” are equal in length, and the 2 sides on the “bottom” are equal in length.
3. Is the kite you drew in Problem 2, a parallelogram? Why or why not?

No, the kite I drew is not a parallelogram. A parallelogram must have both sets of opposite sides parallel. There are no parallel sides in my kite. The only time a kite is a parallelogram is when the kite is a square or a rhombus.
G5-M5-Lesson 20

1. Fill in the table below.

<table>
<thead>
<tr>
<th>Shape</th>
<th>Defining Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapezoid</td>
<td>• Quadrilateral</td>
</tr>
<tr>
<td></td>
<td>• Has at least one pair of parallel sides</td>
</tr>
<tr>
<td>Parallelogram</td>
<td>• A quadrilateral in which both pairs of opposite sides are parallel</td>
</tr>
<tr>
<td>Rectangle</td>
<td>• A quadrilateral with 4 right angles</td>
</tr>
<tr>
<td>Rhombus</td>
<td>• A quadrilateral with all sides of equal length</td>
</tr>
<tr>
<td>Square</td>
<td>• A rhombus with four 90° angles</td>
</tr>
<tr>
<td></td>
<td>• A rectangle with 4 equal sides</td>
</tr>
<tr>
<td>Kite</td>
<td>• Quadrilateral with 2 consecutive sides of equal length</td>
</tr>
<tr>
<td></td>
<td>• Has 2 remaining sides of equal length</td>
</tr>
</tbody>
</table>

2. \(TUVW \) is a square with an area of 81 cm\(^2\), and \(UB = 6.36 \) cm. Find the measurements using what you know about the properties of squares.

\[UW = 12.72 \text{ cm} \]

Diagonals of a square bisect each other, so \(UB \) and \(BW \) are equal in length. \(6.36 + 6.36 = 12.72 \)

\[TV = UW = 12.72 \text{ cm} \]

I know that in a square the diagonals are equal in length.

\[\text{Perimeter} = 36 \text{ cm} \]

I know that in a square every side length is equal, so I need to think about what times itself is equal to 81. I know that \(9 \times 9 \) is 81, so each side is 9 cm. Since there are 4 equal sides, I can multiply \(9 \times 4 \) to get the perimeter.

\[m \angle TUV = 90^\circ \]

I know every angle in a square must be 90° because it is a defining attribute of a square.

Lesson 20: Classify two-dimensional figures in a hierarchy based on properties.
G5-M5-Lesson 21

Finish each sentence below by writing "sometimes" or "always" in the first blank, and then state the reason why. Sketch an example of each statement in the space to the right.

a. A rectangle is sometimes a square because a rectangle has 4 right angles, and a square is a special type of rectangle with 4 equal sides.

This is a rectangle. It is not a square because all 4 sides are not equal in length.

b. A square is always a rectangle because a rectangle is a parallelogram with 4 right angles. A square is a rectangle with 4 equal sides.

This is a square and a rectangle because it has 4 right angles and 4 equal sides.

c. A rectangle is sometimes a kite because a square fits the definition of a kite and rectangle. A kite has two pairs of sides that are equal, which is the same as a square.

This is a kite, a square, and a rectangle. It has 4 right angles and 2 sets of consecutive sides equal in length.

d. A rectangle is always a parallelogram because it has two pairs of parallel sides.

All rectangles can also be called parallelograms.

e. A square is always a trapezoid because it has at least one pair of parallel sides.

This square, and all squares, has 2 pairs of opposite sides that are parallel. All squares can also be called trapezoids.

f. A trapezoid is sometimes a parallelogram because a trapezoid has to have at least one pair of parallel sides, but it could have two pairs, which fits the definition of a parallelogram.

This figure is a trapezoid but not a parallelogram. It only has 1 pair of opposite sides parallel. (The "top" and "bottom" sides are parallel.)